
Homework Solutions #1

CAS MA 511

Problem (1.2.1 (a)). Prove that
√

3 is irrational. Does a similar argument work to show that
√

6
is irrational?

First of all, we prove the following useful lemma.

Lemma. If p2 is a multiple of 3, then p is a multiple of 3.1

Proof of lemma. It suffices to prove the contrapositive, which says that if p is not a multiple of 3,
then p2 is not a multiple of 3. Assume that p is not a multiple of 3, then we there is some k ∈ Z
such that:

either p = 3k + 1 or p = 3k + 2

If p = 3k+1, then p2 = 9k2 +9k+1 = 3(3k2 +3k)+1 which is not a multiple of 3. If If p = 3k+2,
then p2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 which is not a multiple of 3. So, either way p2 is
not a multiple of 3.

Proof that
√

3 is irrational. Assume, for contradiction that there are integers p and q such that(
p
q

)2
= 3 and p and q share no common factor other than 1. Then, we have p2 = 3q2, so that

by the above lemma, p is a multiple of 3. Moreover, p = 3k for some k ∈ Z, and we have
p2 = 9k2 = 3q2, so that q2 = 3k2. However, by applying the lemma again, this implies that q is
also a multiple of 3, which contradicts that p and q share no common factor other than 1. Thus,
no such p and q exist.

A similar argument also works to show that
√

6 is irrational. We would have p2 = 3(2q2) = 2(3q2),
so that p must be a multiple of 3 and a multiple of 2 and hence a multiple of 6. Then, p = 6k
implies that q2 = 6k2, so that q is also a multiple of 6 by the same logic.

Problem (1.2.1 (b)). Where does the proof of Theorem 1.1.1 break down if we try to use it to
prove

√
4 is irrational?

The argument breaks down for
√

4, because p2 = 4q2 does not imply that p is a multiple of 4, but
only that p is a multiple of 2. For example if p = 6 which is not a multiple of 4, then p2 = 36 which
is. Letting p = 2k, we obtain k2 = q2. Then, k is a common multiple of p and q and hence equal
to 1, so that p = 2 and q = 1 as expected.

Problem (1.2.5 (a)). Let A and B be subsets of R. If x ∈ (A ∩B)c, explain why x ∈ Ac ∪ Bc.
This shows that (A ∩B)c ⊆ Ac ∪Bc.

1This is not immediately obvious and does need to be proven.

1



Proof. Let x ∈ (A ∩B)c be arbitrary and fixed.2 This means that x /∈ A ∩ B. A ∩ B consists of
all elements in both A and B so x /∈ A or x /∈ B. If x /∈ A, then x ∈ Ac. This in turn means
that x ∈ Ac ∪ Bc. If x /∈ B, then x ∈ Bc. This in turn means that x ∈ Ac ∪ Bc. In all cases, we
find that x ∈ Ac ∪ Bc. x was an arbitrary element of (A ∩B)c so all elements of (A ∩B)c are in
x ∈ Ac ∪Bc. We can conclude that (A ∩B)c ⊆ Ac ∪Bc.

Problem (1.2.5 (b)). Show (A ∩B)c ⊇ Ac ∪Bc, and conclude that (A ∩B)c = Ac ∪Bc.

Proof. Let x ∈ Ac ∪ Bc be arbitrary and fixed. By definition, x ∈ Ac or x ∈ Bc. If x ∈ Ac, then
x /∈ A. This means that x /∈ A ∩ B so x ∈ (A ∩B)c. If x ∈ Bc, then x /∈ B. This means that
x /∈ A ∩ B so x ∈ (A ∩B)c. In all cases, the desired result holds. We now know that (A ∩B)c ⊆
Ac ∪Bc and (A ∩B)c ⊇ Ac ∪Bc. The only way for both to hold is if (A ∩B)c = Ac ∪Bc.

Problem (1.2.5 (c)). Show (A ∪B)c = Ac ∩Bc by demonstrating inclusion both ways.

Proof. Let x ∈ (A ∪B)c be arbitrary and fixed. This means that x /∈ A ∪ B. If it were true that
x ∈ A or that x ∈ B, then we would have x ∈ A ∪ B. Therefore, x /∈ A and x /∈ B. So, x ∈ Ac

and x ∈ Bc. We finally conclude that x ∈ Ac ∩Bc and so (A ∪B)c ⊆ Ac ∩Bc.
Let x ∈ Ac ∩ Bc be arbitrary and fixed. x ∈ Ac and x ∈ Bc by definition. So, x /∈ A and x /∈ B.
All elements of A ∪ B are in A or in B so x /∈ A ∪ B. This means that x ∈ (A ∪B)c and so
(A ∪B)c ⊇ Ac∩Bc. These sets contain each other so we can conclude that (A ∪B)c = Ac∩Bc.

Problem (1.2.8 (a)). Here are two important definitions related to a function f : A → B. The
function f is one-to-one if a1 6= a2 in A implies f(a1) 6= f(a2) in B. The function f is onto if,
given any b ∈ B, it is possible to find an element a ∈ A for which f(a) = b. Give an example of
the following:
f : N→ N that is 1-1 but not onto.
Claim: f : N→ N defined by f(n) = 2n is 1-1 but not onto.

Proof. Let x, y ∈ N be arbitrary and fixed elements such that x 6= y. Without loss of generality, we
can let y be the larger value and write y = x + b for some b ∈ N.3 f(y) = f(x + b) = 2(x + b) =
2x + 2v 6= 2x = f(x) so f is 1-1.
There is no n ∈ N such that f(n) = 1 because this would imply that n = 1

2 , which is not in N. f
is not onto.

Problem (1.2.8 (b)). f : N→ N that is onto but not 1-1.

Claim: f : N→ N defined by f(n) =

n− 1 n ≥ 2
1 n = 1

is onto but not 1-1.

Proof. Let x ∈ N be arbitrary and fixed. x+1 ∈ N because N is closed under addition. Furthermore,
x + 1 ≥ 2 so f(x + 1) = (x + 1)− 1 = x. f is therefore an onto function.
f(1) = 1 and f(2) = 2− 1 = 1 but 1 6= 2. This means f is not 1-1.

Problem (1.2.8 (c)). f : N→ Z that is 1-1 and onto.

Claim: f : N→ Z defined by f(n) =


n−1

2 n odd
−n

2 n even
is 1-1 and onto.

2These are important properties that should be stated. Arbitrary means x is not a ”special” element. Fixed means
x is not changing. These properties together let us conclude the statement is true for all elements.

3It is convenient to label the larger and smaller values this way, but it does not invalidate our conclusions to do
this.
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Proof. Let x, y ∈ N be arbitrary and fixed elements such that x 6= y. Without loss of generality, we
can let y be the larger value and write y = x + b for some b ∈ N. If x and y have different parity
(even- or odd-ness), then clearly f(x) 6= f(y) because one value is ≤ −1 and the other is ≥ 0. If
x and y are both even, then we have f(y) = f(x + b) = −x+b

2 = −x
2 −

b
2 6= −

x
2 = f(x). If x and

y are both odd, then we have f(y) = f(x + b) = (x+b)−1
2 = x−1

2 + b
2 6=

x−1
2 = f(x). We therefore

conclude that f is 1-1.
Let x ∈ Z be arbitrary and fixed. If x ≤ −1, then define y = −2x. x ≤ −1 means that −x ≥ 1 so
−x ∈ N. N is closed under multiplication so y ∈ N. By the way we have defined y, it is clear that
it is even. We then compute that f(y) = f(−2x) = − (−2x)

2 = x. So f hits all x ∈ Z with x ≤ −1.
If x ≥ 0, define y = 2x + 1. If x = 0, then y = 1 so y ∈ N. In the other cases, we use the fact
that N is closed under addition and multiplication to conclude y ∈ N. It is clear by the definition of
y that it is odd. We now compute f(y) = f(2x + 1) = (2x+1)−1

2 = x. So f also hits all x ∈ Z with
x ≥ 0 so f is onto.

Problem (1.2.12 (a)). Let y1 = 6 and for each n ∈ N define yn+1 = 2yn−6
3 . Use induction to prove

that the sequence satisfies yn > −6 for all n ∈ N.

Proof. First, we note that y1 > −6. Now, assume for the sake of induction that yn > −6. We can
compute the following

yn+1 = 2yn − 6
3 (1)

>
2(−6)− 6

3 (2)

>
−18

3 (3)

> −6 (4)

yn > 6 implies that yn+1 > 6 and y1 > −6 so we conclude via induction that yn > −6 for all
n ∈ N.

Problem (1.2.12 (b)). Use another induction argument to show that the sequence (y1, y2, y3...) is
decreasing.4

Proof. We begin by computing yn+1 − yn for n ∈ N with n ≥ 2.

yn+1 − yn = 2yn − 6
3 − 2yn−1 − 6

3 (5)

= 2yn − 6
3 + −2yn−1 + 6

3 (6)

= 2yn − 2yn−1 − 6 + 6
3 (7)

= 2
3(yn − yn−1) (8)

If we assume for the sake of induction that yn−yn−1 < 0, our work above shows that yn+1−yn < 0.
The case for n = 1 requires us to compute y2 = 2(6)−6

3 = 2. This shows that y2 − y1 = −4. These
facts together suffice to show that yn is a decreasing sequence via induction.

Problem (1.3.2 (a)). Give an example of each of the following, or state that the request is impos-
sible:

4We can also prove it by rewriting yn+1 − yn in terms of yn and using the previous result.
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A set B with inf(B) ≥ sup(B).
Claim: sets satisfying this property are exactly the sets of the form {a} (these are called singleton
sets).5

Proof. The set of upper bounds of {a} is U = {x ∈ R : x ≥ a}. Clearly, a ∈ U . If b ∈ U is such
that b ≤ a then we have that a ≤ b and b ≤ a. The only way that this holds is if b = a. Thus,
a = sup{a}. We can repeat a similar argument with the set of lower bounds, L = {x ∈ R : x ≤ a},
to show that a = inf{a}. So, sets of the form {a} have inf{a} ≥ sup{a}.
Let B be a set not of this form. Either B = ∅ or B has at least 2 elements. If B = ∅, then neither
inf nor sup exist (the sets of upper and lower bounds are both R which has no least or greatest
element). If B has at least 2 elements, then we can choose a, b ∈ B with a < b. We find that
inf B ≤ a < b ≤ sup B. This means that inf B < sup B so we have proven no other sets can have
this property.

Problem (1.3.2 (b)). A finite set that contains its infimum but not its supremum.
This is not possible. Claim: Finite sets contain both their infimum and supremum.

Proof. Assume for the sake of contradiction that A is a finite set with s = sup A and s /∈ A. s ≥ a
for all a ∈ A and s /∈ A means that s > a for all a ∈ A. Given a1 ∈ A, define b1 = s+a1

2 . Consider
the following inequality: a = a+a

2 < s+a
2 < s+s

2 = s. This shows that a1 < b1 < s. If b1 is an upper
bound for A, then s is not a supremum and we have a contradiction. If b1 is not an upper bound,
then there exists a2 ∈ A with a2 > b1. We finish our proof with by an induction argument. We
define bn = s+an

2 and use the same algebra to conclude an < bn < s. If any bn is an upper bound
we again get a contradiction. If bn is not an upper bound then we can define an+1 to be an element
of A with an+1 > bn. Such an element always exists since bn is not an upper bound. Our induction
argument shows that we can continue this construction infinitely. However, this requires an infinite
number of unique elements of A, contradicting our assumption that A is finite. In all cases we reach
a contradiction so we conclude all finite sets include their supremum. A similar argument shows
they also contain their infimum.

Problem (1.3.2 (c)). A bounded subset of Q that contains its supremum but not its infimum.
Claim: A = Q ∩ (0, 1] contains it’s supremum but not infimum.

Proof. By the way we have defined A, it is clear that 0 is a lower bound and 1 is an upper bound.
1 ∈ A and it is an upper bound so all other upper bounds must be larger and sup A = 1. 0 is inf A
as a result of the Archimedean property.6

Problem (1.3.5 (a)). As in example 1.3.7, let A ⊆ R be nonempty and bounded above, and let
c ∈ R. This time define the set cA = {ca : a ∈ A}.
If c ≥ 0, show that sup(cA) = c sup(A).

Proof. Let s = sup A. If c = 0, then cA = {0} and cs = 0. Using the same argument as 1.3.2 (a),
we see that cs = sup cA in this case. If c > 0, more work is needed. s ≥ a for all a ∈ A. Because
c > 0, this immediately shows cs ≥ ca for all a ∈ cA. This means cs is indeed an upper bound of
cA. Assume for the sake of contradiction that sup cA 6= cs. This means that there is some b < cs
that is an upper bound of cA. This means b ≥ ca for all a ∈ A. Again, because c > 0, we get that
b
c
≥ a for all a ∈ A and so b

c
is an upper bound for A. b < cs also shows us that b

c
< s. But this

means that s 6= sup A and we have a contradiction.
5This is a stronger claim that we are asked to show. Only the first part is necessary for statement in the problem
6We didn’t learn this until the next section and that is why you are not asked to prove your set work in this

problem.
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Problem (1.3.5 (b)). Postulate a similar type of statement for sup(cA) for the case c < 0.
Claim: For c < 0, sup cA = c inf A.

Proof. We follow a very similar argument as above for the proof. The key difference comes from
the fact that c < 0. This causes all inequalities to be reversed when we multiply or divide. This
corrects for the difference in inequality in the definitions of infimum and supremum.

Problem (1.3.7). Prove that if a is an upper bound for A, and if a is also an element of A, then
it must be that sup(A) = a.

Proof. Assume for the sake of contradiction that sup A 6= a. a is an upper bound of A so it must
be that there is some other upper bound, b < a. However, a ∈ A so b < a means b is not a valid
upper bound. This is a contradiction so sup A = a.

Problem (1.4.1 (a)). Recall that I stands for the set of irrational numbers. Show that if a, b ∈ Q
then ab and a + b are elements of Q as well.

Proof. Let a = p
q

and b = x
y

for p, x ∈ Z and q, y ∈ N. We compute that ab = p
q

x
y

= px
qy

and
a + b = p

q
+ x

y
= py

qy
+ qx

qy
= py+qx

qy
. Z and N are closed under addition and multiplication so

px, py, qx ∈ Z and qy ∈ N. This means that ab, a + b ∈ Q.

Problem (1.4.1 (b)). Show that if a ∈ Q and t ∈ I, then a + t ∈ I and at ∈ I as long as a 6= 0.

Proof. Assume for the sake of contradiction that a + t ∈ Q. Then consider a + t + (−a) = t.
−a, a + t ∈ Q and Q is closed under addition so t ∈ Q. This contradicts the statement that t ∈ I
so we must conclude that a + t ∈ I. Assume now that at ∈ Q and a 6= 0. Consider at 1

a
= t.

1
a
, at ∈ Q and Q is closed under multiplication so t ∈ Q. This contradicts the statement that t ∈ I

so we must also conclude that at ∈ I for a 6= 0.

Problem (1.4.1 (c)). Part (A) can be summarized by saying that Q is closed under addition and
multiplication. Is I closed under addition and multiplication? Given two irrational numbers a and t,
what can we say about s + t and st?
I is not closed under addition or multiplication. Very little can be said about s + t or at if s, t ∈ I.

Proof. Let s =
√

2 and t = −
√

2. We compute that s+ t =
√

2+−
√

2 = 0 and st =
√

2(−
√

2) =
−2. 0,−2 ∈ Q so I is not closed under either operation. If r =

√
3, then sr =

√
2
√

3 =
√

6 which
we know is in I. s+r =

√
2+
√

3 is also in I for a more complicated reason. If it were in Q, then so
would (s+r)2 by closure of Q under multiplication. (s+r)2 = (

√
2+
√

3)2 = 2+2
√

6+3 = 5+2
√

6.
We know that 2

√
6 ∈ I by part b and therefore that 5+2

√
6 ∈ I also by part b. This is a contradiction

to the closure of Q under multiplication so s + r ∈ I. We have shown examples of combinations of
irrationals via addition and multiplication that yield either rationals or irrationals.

Problem (1.4.4). Let a < b be real numbers and consider the set T = Q∩ [a, b]. Show sup(T ) = b.

Proof. b is an upper bound for the set [a, b] so no elements of [a, b] are larger than b. T ⊂ [a, b] so
it is certainly true that T does not contain any elements larger than b. So, b is also an upper bound
for T . Let ε > 0 be arbitrary and consider (b− ε, b). Q is dense in R so we have an element in this
interval which is also in T . This holds for all ε so we can conclude that sup T = b.
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Problem (1.4.6 (a)). Recall that a set B is dense in R if an element of B can be found between
any two real numbers a < b. Which of the following sets are sense in R? Take p ∈ Z and q ∈ N in
every case.
The set of all rational numbers p

q
with q ≤ 10.

Claim: This set is not dense in R.

Proof. Consider the interval ( 1
100 , 9

100). 0 is a less than the entire interval so we only need to consider
the possibility that p > 0 and 1 ≤ q ≤ 10 gives a rational in the interval. Considering p = 1 and
checking each q values shows that all of these terms are greater than the entire interval and all other
values of p are even larger so we have no elements in this interval.

Problem (1.4.6 (b)). The set of all rational numbers p
q

with q a power of 2.
Claim: This set is dense in R.

Proof. Let a < b be arbitrary and fixed. We know b − a > 0. We now consider 1
b−a
∈ R. N is

unbounded in R so we have n ∈ N with n > 1
b−a

, 2n > n for all n ∈ N so 2n > 1
b−a

. We can then
conclude that 1

2n < b− a. We can therefore find some p ∈ N such that a < p
2n < b. This holds for

all a < b so we conclude that our set is dense in R.

Problem (1.4.6 (c)). The set of all rational numbers p
q

with 10|p| ≥ q.
Claim: This set is not dense in R.

Proof. Rearranging the inequality which defines our set gives |p
q
| ≥ 10. Therefore, there are no

elements in the interval (−10, 10) so the set is not dense in R.

Problem (1.5.1). Finish the following proof for Theorem 1.5.7.
Assume B is a countable set. Thus, there exists f : N→ B, which is 1-1 and onto. Let A ⊆ B be
an infinite subset of B. We must show that A is countable.
Let n1 = min {n ∈ N : f(n) ∈ A}. As a start to a definition of g : N → A, set g(1) = f(n1).
Show how to inductively continue this process to produce a 1-1 function g from N onto A.

Proof. We inductively define g and nk as follows: g(k) = f(nk), nk = min {n ∈ N : f(n) ∈ A, n > nk−1}
for all k ∈ N. We need to show that this definition is valid and that it is both 1-1 and onto.7
f is onto B so all elements b ∈ B have some n ∈ N with f(n) = b. All a ∈ A are also in B so
they have n ∈ N with f(n) = a. So f is onto A. A is infinite and f is onto so {n ∈ N : f(n) ∈ A}
is infinite. {n ∈ N : f(n) ∈ A, n > nk−1} = {n ∈ N : f(n) ∈ A, } \ ⋃k−1

i=1 {ni}.
⋃k−1

i=1 {ni} is finite
and {n ∈ N : f(n) ∈ A} is infinite so {n ∈ N : f(n) ∈ A, n > nk−1} is infinite.8 Every set from
which nk is defined is infinite so they are obviously not ∅. {n ∈ N : f(n) ∈ A, n > nk−1} ⊆ N
so the set is bounded below and therefore has a well-defined infimum. Finally, for x 6= y in N,
|x − y| ≥ 1. Similar to the statement on sumprema, infima must be arbitrarily close to elements
in the set. For 0 < ε < 1 there must be exactly 1 element in (inf {n ∈ N : f(n) ∈ A, n > nk−1},
inf {n ∈ N : f(n) ∈ A, n > nk−1}+ε) for all ε. The only way that this is possible is if this element is
distance 0 from inf {n ∈ N : f(n) ∈ A, n > nk−1}. This means that {n ∈ N : f(n) ∈ A, n > nk−1}
contains its infimum and so the minimum is well-defined. All nk are therefore properly defined.
Let k < j be in N. By the way we have defined our ni, we immediately see that
nk /∈ {n ∈ N : f(n) ∈ A, n > nj−1} and nj ∈ {n ∈ N : f(n) ∈ A, n > nj−1} so nk 6= nj. g(k) =

7It is probably reasonable to accept the fact that nk are well-defined without proof but we will do it anyway.
8A more thorough proof would invoke the closure of N under addition and our natural identification between finite

sets and N to justify this.
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f(nk) and g(j) = f(nj) so g(k) = g(j) if and only if f(nk) = f(nj. However, f is 1-1 and nk 6= nj

so this is not the case. It follows that g is also 1-1.
Let a ∈ A be arbitrary and fixed. We previously showed that f is onto A so there is some
n′ ∈ N such that f(n′) = a. Assume for the sake of contradiction that n′ 6= nk for any
k ∈ N. f(n′) = a so n′ ∈ {n ∈ N : f(n) ∈ A} and n′ 6= n1 so n′ > n1. This means that
n′ ∈ {n ∈ N : f(n) ∈ A, n > n1}. Additionally, if n′ ∈ {n ∈ N : f(n) ∈ A, n > nk−1} and n′ 6= nk

then n′ > nk. This means that n′ ∈ {n ∈ N : f(n) ∈ A, n > nk}. By induction, we conclude that
n′ > nk for all k ∈ N. This means that n′ is an upper bound for N in R so we get a contradiction.
This means that n′ = nk for some k ∈ N. This holds for all a ∈ A so g is onto. g is a 1-1 and
onto function from N to A so A is countable. This assumed that A was not finite. Clearly we can
produce finite sets from an infinite set (singleton sets for example) so we must conclude that subsets
of countable sets are countable or finite (the actual phrasing of the theorem)..

Problem (1.5.4 (a)). Show (a, b) ∼ R for any interval (a, b).

Proof. Let f : (a, b)→ R be defined by f(x) = x−a+b
2

(x−a)(x−b) . In principle we can prove this is 1-1 and
onto with elementary algebra and the condition that a < x < b but we will not prove that here.
The vertical and horizontal line tests suffice for convincing ourselves.

Problem (1.5.4 (b)). Show that an unbounded interval like (a,∞) = {x : x > a} has the same
cardinality as R as well.

Proof. Let f : (a,∞)→ R be defined by f(x) = (x−a+1)(x−a−1)
x−a

. Again, we claim that this function
is 1-1 and onto and that these properties can be shown with elementary algebra. We also claim this
map is also 1-1 and onto if the domain is changed to be (−∞, a).

Problem (1.5.4 (c)). Using open intervals makes it more convenient to produce the required 1-1,
onto functions, but it is not really necessary. Show that [0, 1) ∼ (0, 1) by exhibiting a 1-1, onto
function between the two sets.

Proof. Let f : [0, 1) → (0, 1) be defined by f(x) =


x x /∈

{
1− 1

an : n ∈ N
}

1
2 x = 0
1− 1

2n+1 x = 1− 1
2n

. Clearly,

for x /∈ {0} ∪
{
1− 1

an : n ∈ N
}

, the function is 1-1 and onto and only produces values in the same
set. For x ∈ {0} ∪

{
1− 1

an : n ∈ N
}

, we produce elements in
{
1− 1

an : n ∈ N
}

so if we can show
the function is 1-1 and onto with this restricted domain, we will have shown that f is 1-1 and
onto for our intervals. For y ∈

{
1− 1

an : n ∈ N
}

arbitrary and fixed, we can write y = 1 − 1
2m for

some m ∈ N. Let x ∈ {0} ∪
{
1− 1

an : n ∈ N
}

be 1 − 1
2m−1 if m ≥ 2 and 0 if m = 1. f(x) =

1− 1
2(m−1)+1 = 1− 1

2m = y if m ≥ 2 and f(x) = 1
2 = 1− 1

21 = y if m = 1. In all cases f(x) = y so
we have found x ∈ {0}∪

{
1− 1

an : n ∈ N
}

with f(x) = y for arbitrary y ∈
{
1− 1

an : n ∈ N
}

. This
means f is onto on the restricted and full domain. If x 6= y are in

{
1− 1

an : n ∈ N
}

, then x = 1− 1
2n

and y = 1 − 1
2m for n 6= m in N. f(x) − f(y) = 1 − 1

2n+1 − 1 + 1
2m+1 = 1

2m+1 (1 − 1
2n−m ). Since

n 6= m, 1 − 1
2n−m 6= 0 and f(x) 6= f(y). f(1 − 1

2n ) = 1 − 1
2n+1 > 1

2 so no x ∈
{
1− 1

an : n ∈ N
}

satisfies f(x) = f(0).With this, we conclude that f is 1-1 on the restricted domain and therefore
also 1-1 on the original domain.

Problem (1.5.5 (a)). Why is A ∼ A for every set A?
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Proof. Define f : A → A by f(x) = x. f is 1-1 and onto for obvious reasons so we have our
desired function.
Problem (1.5.5 (b)). Given sets A and B, explain why A ∼ B is equivalent to asserting B ∼ A.

Proof. Let f : A→ B be a 1-1 and onto function guaranteed by the definition of ∼. We will define
g : B → A which is also 1-1 and onto, showing that B ∼ A. For all b ∈ B define g(b) = a for the
unique a ∈ A such that f(a) = b. This is a valid definition because f is 1-1 and onto. Because f
is onto, there is at least 1 a ∈ A such that f(a) = b. This means there is at least 1 possible target
for g(b). Assume for the sake of contradiction that a is not unique. This means there is a′ ∈ A
with f(a′) = b. But f is 1-1 so a′ = a and we get a contradiction. This means there is exactly 1
target for g(b) so the function is well-defined. For b, b′ ∈ B, g(b) = a for the unique value satisfying
f(a) = b and g(b′) = a′ for the unique value satisfying f(a′) = b′. If b 6= b′, then f(a) 6= f(a′). f is
1-1 so a 6= a′ and we see g(b) 6= g(b′). g is a 1-1 function. For a ∈ A arbitrary and fixed, consider
f(a) ∈ B. g(f(b)) = a as it is the unique point with f(a) = f(a). This holds for all a ∈ A so g is
onto.
Problem (1.5.5 (c)). For three sets A, B, and C, show that A ∼ B and B ∼ C implies A ∼ C.
These three properties are what is meant by saying that ∼ is an equivalence relation.

Proof. Let f : A→ B and g : B → C be 1-1 and onto functions guaranteed by the definition of ∼.
We claim that h : A→ C defined by h(x) = g(f(x) is 1-1 and onto. Let a, a′ ∈ A be arbitrary and
fixed. h(a) = g(f(a)) and h(a′) = g(f(a′)). If a 6= a′, then f(a) 6= f(a′) because f is 1-1. This
also means that g(f(a)) 6= g(f(a′)) because g is 1-1. So, h(a) 6= h(a′) and h is 1-1. Let c ∈ C be
arbitrary and fixed. g is onto so there is b ∈ B such that g(b) = c. f is onto so there is a ∈ A such
that f(a) = b. This a satisfies h(a) = g(f(a)) = g(b) = c so h is onto.
Problem (2.2.1). What happens if we reverse the order of the quantifiers in Definition 2.2.3?
Definition: A sequence (xn) verconges to x if there exists and ε > 0 such that for all N ∈ N it is
true that n ≥ N implies |xn − x| < ε.
Gave an example of a vercongent sequence. Is there an example of a vercongent sequence that is
divergent? Can a sequence verconge to two different values? What exactly is being described in
this strange definition?

Proof. Consider the sequences (xn) = 0 and (yn) = (−1)n. Taking ε > 0, we see that (xn)
verconges to all x ∈ (−ε, ε) by noting |x− xn| = |x| < ε for all n ∈ N. (xn) is constant so it also
converges. The example (yn) does not converge, but for ε > 1, a similar calculation shows that for
all n ∈ N, |y− yn| < ε− 1 for y ∈ (1− ε, ε− 1). In reality, the condition that a sequence verconges
is simply the condition that it is bounded. Any bound can be used to trivially show the sequence
verconges to 0 and verconging to x means that M = |x| + ε is a bound for any ε satisfying the
definition.
Problem (2.2.4 (a)). Give an example of each or state that the request is impossible. For any that
are impossible, give a compelling argument for why that is the case.
A sequence that with an infinite number of ones that does not converge to one.

Proof. Let (xn) = (−1)n. All even terms are 1 so there are an infinite number of them. The triangle
inequality shows that it does not converge to any limit.

|x− x2n|+ |x− x2m−1| ≥ |x2n − x2m−1| (9)
≥ |1 + 1| (10)
≥ 2 (11)
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So, even if |x − x2n| < ε as n → ∞, |x − x2m−1| > 2 − ε. For ε < 1 this shows |x − x2m−1| > ε
so the sequence does not converge.

Problem (2.2.4 (b)). A sequence with an infinite number of ones that converges to a limit not
equal to one.

Proof. This is not possible. Let (yn) be a sequence with an infinite number of ones. Let y 6= 1
be arbitrary and fixed, then consider ε = |1−y|

2 . |1 − y| > ε so all n ∈ N such that yn = 1 violate
the convergence criterion. There is no N ∈ N for which these terms stop being an issue because, if
there were such an N , there would be at most N ones in the sequence. This is a ε > 0 for which
the convergence criterion cannot be satisfied so the sequence cannot converge to y if y 6= 1.

Problem (2.2.4 (c)). A divergent sequence such that for every n ∈ N it is possible to find n
consecutive ones somewhere in the sequence.

Proof. Define the sequence (zn) =

0 n ∈
{

n(n+1)
2 + n : n ∈ N

}
1 else

. For similar reasons as part a,

the sequence diverges. There are always terms which are distance 1 apart in the tail of the sequence.
To find a sequence of m ones in a row, consider (m−1)m

2 + m ≤ n ≤ m(m+1)
2 + m− 1. (m−1)m

2 + m

is 1 more than the zero corresponding to n = m − 1 and m(m+1)
2 + m − 1 is 1 less than the

zero corresponding to n = m so these are the beginning and end of a string of consecutive ones.
m(m+1)

2 + m− 1−
(

(m−1)m
2 + m

)
+ 1 = m(m−1)

2 + m(2)
2 + m− 1− (m−1)m

2 −m + 1 = m. The length
of this string is therefore m as we desired. This works for all m ∈ N so we have a sequence with
the desired properties.

Problem (2.3.2 (a)). Using only Definition 2.2.3, prove that if (xn)→ 2 then:(
2xn−1

3

)
→ 1.

Proof. Let ε > 0 be arbitrary and fixed. Let N ∈ N be such that |xn − 2| < 3
2ε for all n > N .

The convergence of (xn) to 2 guarantees such an N to exist. An algebraic manipulation gives the
following

|xn − 2| < 3
2ε (12)

2
3 |xn − 2| < ε (13)

|23(xn − 2)| < ε (14)

|2xn

3 − 4
3 | < ε (15)

|2xn

3 − 1
3 − 1| < ε (16)

|2xn − 1
3 − 1| < ε (17)

Thus, we have found N ∈ N such that n > N implies |2xn−1
3 − 1| < ε for a given ε. This

construction works for all ε > 0 so we have proven convergence.

Problem (2.3.2 (b)).
(

1
xn

)
→ 1

2 .
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Proof. Let 0 < ε < 1 be arbitrary and fixed. Let N ∈ N be such that |xn − 2| < 2ε for all n > N .
The convergence of (xn) to 2 guarantees such an N to exist. ε < 1 implies that |xn| > 1. In turn
this tells us that 1

|xn| . An algebraic manipulation gives the following

|xn − 2| < 2ε (18)
1
2 |xn − 2| < ε (19)

1
2

1
|xn|
|xn − 2| < ε (20)

|xn − 2
2xn

| < ε (21)

| xn

2xn

− 2
2xn

| < ε (22)

|12 −
1
xn

| < ε (23)

Thus, we have found N ∈ N such that n > N implies |12 −
1

xn
| < ε for a given 0 < ε < 1. This

construction works for all 0 < ε < 1. For all ε ≥ 1, we can choose the same N that we get for
ε = 1

2 and the result still follows.9 Thus, we can find our desired N for any ε > 0 and have proven
convergence.

Problem (2.3.5). Let (xn) and (yn) be given, and define (zn) to be the ”shuffled” sequence
(zn) = (x1, y1, x2, y2, x3, y3, ..., xn, yn, ...). Prove that (zn) is convergent if and only if (xn) and
yn) are both convergent with lim xn = lim yn.

Proof. Suppose lim xn = lim yn = L and let ε > 0 be arbitrary. By our definition of convergence,
we can choose Nx, Ny ∈ N such that n > Nx implies |xn−L| < ε and n > Ny implies |yn−L| < ε.
Define N = max{2Nx, 2Ny}. Note that z2n = yn and z2n−1 = xn for all n ∈ N. For all n > N , zn

is either xn+1
2

or yn
2

. If zn = xn+1
2

, then we use n > 2Nx to compute n
2 > Nx and conclude that

n+1
2 > Nx. This means that |xn+1

2
−L| < ε and so |zn−L| < ε. If zn = yn

2
, then we use n > 2Ny

to conclude n
2 > Ny. This means that |yn

2
− L| < ε and so |zn − L| < ε. These cases cover all zn

for n > N so we have shown lim zn = L.
Suppose lim zn = L and let ε > 0 be arbitrary. Choose N ∈ N such that n > N implies
|zn − L| < ε. We claim that this N is a valid choice to show convergence for both (xn) and (yn).
Using our previous observation about the position of xn and yn as terms in zn, we see that xn = zm

for some m ≥ n and yn = zk for some k ≥ n. This means that |xn − L| = |zm − L| < ε and
|yn − L| = |zk − L| < ε. So, we conclude that lim xn = lim yn = L.

Problem (2.3.12 (a)). A typical task in analysis is to decipher whether a property possessed by
every term in a convergent sequence is necessarily inherited by the limit. Assume (an → a and
determine the validity of each claim. Try to produce a counterexample for any that are false.
If every an is an upper bound for a set B, then a is also an upper bound for B.

Proof. This is true. Assume for the sake of contradiction that a is not an upper bound for B.
Let b ∈ B be a fixed point such that a < b. Let ε = b − a. By the definition of convergence,
there is some N ∈ N such that n > N implies |an − a| < ε. For any such n, we see that
an < a + ε = a + b− a = b. This means that an is not an upper bound for B, a contradiction to
our hypothesis.

9This is a common trick. For larger ε, we can choose the same N that was used for smaller ε. We do still need
to note this for the proof’s sake.
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Problem (2.3.12 (b)). If every an is in the complement of the interval (0, 1), than a is also in the
complement of (0, 1).

Proof. This is true. Assume for the sake of contradiction that a ∈ (0, 1). Let ε = min {a, 1− a}.
By the definition of convergence, there is some N ∈ N such that n > N implies |an − a| < ε. For
any such n, we see that a−ε < an < a+ε. Using the our definition of ε, we compute the following:

a− ε < an < a + ε (24)
a−min {a, 1− a} < an < a + min {a, 1− a} (25)

a− a ≤ a−min {a, 1− a} << an < a + min {a, 1− a} ≤ a + 1− a (26)
0 < an < 1 (27)

This contradicts the hypothesis that an /∈ (0, 1) so we conclude that a /∈ (0, 1).

Problem (2.3.12 (c)). If every an is rational, then a is rational.

Proof. This is false. We will construct a sequence (an) consisting of rational numbers which con-
verges to x ∈ R for arbitrary x > 0.10 For x < 0, we can take the sequence −(an) where (an) is the
corresponding sequence converging to −x. Obviously, for x = 0 we can take the sequence which is
identically 0. Thus, if we can construct sequences for arbitrary x > 0, we can do it for any x ∈ R.
Let a1 = 0 and for n ∈ N with n ≥ 2 define an to be p

2k with k ∈ N is the smallest value such
that

{
m
2k : m ∈ N

}
has at least 1 element in (an−1, x) and with p ∈ N the largest value such that

p
2k < x. The Archimedean property guarantees that we can always find such k and p. The way we
have defined our sequence, it is clearly increasing and bounded so it does converge. For all ε > 0,
there is a p

2n in (x − ε, x) due to the Archimedean property. By the way we have defined an, it is
clear that the corresponding sequence of k values is increasing and so unbounded. This allows us
to conclude that we will have a k ≥ n and therefore a term in our sequence in (x− ε, x). This hold
for all ε > 0 so this sequence converges to x. Thus, we can construct a sequence of rationals which
converges to any possible x ∈ R. Taking x to be any irrational shows our desired result.

10This is a stronger statement than is asked, but any construction for any specific irrational could be easily modified
to show this result for all x ∈ R.
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