
Homework Solutions #3

CAS MA 511

Problem (3.4.1). If P is a perfect set and K is compact, is the intersection P ∩K always compact?
Always perfect?

Proof. Since P is closed and K is closed, P ∩K is closed. Furthermore, since K is bounded and
P ∩K ⊆ K, P ∩K is bounded and hence compact. If P is nonempty and p ∈ P and if K = {p},
then P ∩K = {p} has an isolated point and hence is not perfect. So, P ∩K must be closed, but
is not necessarily perfect.

Problem (3.4.4). Repeat the Cantor construction from Section 3.1 starting with the interval [0, 1].
This time however, remove the open middle fourth from each component.

(a) Is the resulting set compact? Perfect?
(b) Using the algorithms from Section 3.1, compute the length and dimension of this Cantor-like

set.

Proof. For (a), let C̃0 = [0, 1] and let C̃1 = [0, 3
8 ]∪ [5

8 , 1] be the result of removing the open middle
fourth of C̃0. Continuing this way we obtain a sequence of sets C̃n. Each C̃n is closed and hence
the countable union

C̃ =
∞⋂
n=1

C̃n

is closed. Furthermore, we have C̃ ⊆ [0, 1], so C̃ is bounded and hence compact.

Now, let x ∈ C̃. Then, for n ∈ N, since x ∈ C̃, we have x ∈ C̃n for each n. Since x ∈ C̃n, which is
the finite union of 2n−1 closed intervals of length 1

4

(
3
8

)n−1
, it must lie in one such interval. Let xn

be one of the endpoints of that interval such that xn 6= x. Thus, we obtain a sequence (xn) with
xn 6= x such that 0 ≤ |xn − x| ≤ 1

4

(
3
8

)n−1
. Now, since 1

4

(
3
8

)n−1
→ 0, by the order limit theorem

|xn − x| → 0 and hence (xn) → x. Thus, x is a limit point and since x was arbitrary this implies
that C̃ has no isolated points and is therefore perfect.

For (b), at each step we remove 2n−1 open intervals whose length is 1
4

(
3
8

)n−1
, so the remaining

length is:

1− 1
4 − 21

4
3
8 − 41

4

(3
8

)2
− · · · = 1−

∞∑
n=1

2n−1
(3

8

)n−1 1
4 = 1−

1
4

1− 3
4

= 1− 1 = 0

So, the length of C̃ is 0. Now, if we scale every real number by a factor of of 8
3 , then we get 2

copies of C̃, so the dimension of C̃ is log 2
log 8

3
≈ 0.707.

Problem (3.5.2). Replace each with the word finite or countable, depending on which is
more appropriate.
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(a) The union of Fσ sets is an Fσ set.
(b) The intersection of Fσ sets is an Fσ set.
(c) The union of Gδ sets is an Gδ set.
(d) The intersection of Gδ sets is an Gδ set.

Proof. For (a), the countable union of Fσ sets is an Fσ set. Let An = ⋃∞
m=1 An,m be an Fσ set.

Then, we have:
∞⋃
n=1

An =
∞⋃
n=1

∞⋃
m=1

An,m =
⋃

{(n,m) :n,m∈N}
An,m

So, we just need to show that {(n,m) : n,m ∈ N} is countable. We can lay out the elements of
this set as follows:

(1, 1) (1, 2) (1, 3) · · ·
(2, 1) (2, 2) (2, 3) · · ·
(3, 1) (3, 2) (3, 3) · · ·

... ... ... . . .
Now, just as we did for Q we can snake back and forth starting at the top left to form a bijection
between this set and N. The only difference is that we do not need to skip any pairs, since while
(1, 1) and (2, 2) would correspond to the same fraction it need not be the case that A1,1 = A2,2.
Another way to state this fact is that Fσσ = Fσ.

For (b), the finite intersection of Fσ sets is an Fσ set. If we show that the intersection of two Fσ
sets is Fσ, then it will hold for any finite intersection by induction. If A and B are Fσ, then we have:

A ∩B =
( ∞⋃
n=1

An

)
∩
( ∞⋃
m=1

Bm

)
=
∞⋃
n=1

∞⋃
m=1

An ∩Bm

Thus, A ∩ B is indeed Fσ. If we took a countable intersection and tried to write it as a union
it would require an uncountable index set, which is a bit tricky. Instead, we will show that the
countable intersection of Fσ sets need not be Fσ using a proof by contradiction.

Suppose for contradiction that the countable intersection of Fσ sets is Fσ. Now, let A be a Gδ set,
that is A is the countable intersection of open sets. Since open sets are Fσ, it follows that A is the
countable intersection of Fσ sets and hence is Fσ by our induction. So, we have shown that any Gδ

set is Fσ, however this is a contradiction since the set of irrationals I is a Gδ set, but not an Fσ set.
Thus, the countable intersection of Fσ sets need not be Fσ.

For (c), the finite union of Gδ sets is an Fσ set. This follows from (a) and De Morgan’s laws.

For (d), the countable intersection of Gδ sets is an Fσ set. This follows from (b) and De Morgan’s
laws.

Problem (3.5.10). Prove that the set of real numbers R cannot be written as the countable union
of nowhere-dense sets.

Proof. Suppose for contradiction that R can be written as the countable union of nowhere-dense
sets. That is, there are nowhere-dense sets E1, E2, E3, . . . such that ⋃∞n=1 En = R. Then, for each
En, we have En ⊆ En ⊆ R. Thus, we have:

R =
∞⋃
n=1

En ⊆
∞⋃
n=1

En ⊆ R

2



However, this implies that R = ⋃∞
n=1 En. Then, taking complements, we have:

∅ = Rc =
( ∞⋃
n=1

En

)c
=
∞⋂
n=1

E
c
n

Now, by exercise 3.5.8, each E
c

n is dense in R. Thus, by theorem 3.5.2, the above intersection
should be non-empty, so we have a contradiction, and we are forced to conclude that there are no
such sets E1, E2, E3, . . . .

Problem (4.2.6). Decide if the following claims are true or false, and give short justifications for
each conclusion.

(a) If a particular δ has been constructed as a suitable response to a particular ε challenge, then
any smaller positive δ sill also suffice.

(b) If limx→a f(x) = L and a happens to be in the domain of f , then L = f(a).
(c) If limx→a f(x) = L, then limx→a 3[f(x)− 2]2 = 3(L− 2)2.
(d) If limx→a f(x) = 0, then limx→a f(x)g(x) = 0, for any function g (with domain equal to the

domain of f).

Proof. For (a), the claim is true. Suppose that given ε > 0, we have some δ > 0 such that whenever
0 < |x− c| < δ it follows that |f(x)− L| < ε. Now consider 0 < δ′ < δ. Then, whenever we have
0 < |x− c| < δ′ it follows that 0 < |x− c| < δ and hence |f(x)− L| < ε.

For (b), the claim is false. Let f(x) be as follows:

f(x) =

0 if x 6= 0
1 if x = 0

Then, limx→0 f(x) = 0, but f(0) = 1.

For (c), the claim is true. If limx→a f(x) = L, then by the algebraic limit theorem for functional
limits it follows that:

lim
x→a

3[f(x)− 2]2 = 3
(

lim
x→a

f(x)− lim
x→a

2
)(

lim
x→a

f(x)− lim
x→a

2
)

= 3(L− 2)(L− 2)
= 3(L− 2)2

For (d), the claim is false. Let f(x) = x on (0, 1) and let g(x) = 1
x

on the same domain. Then,
limx→0 f(x) = 0, but we have:

lim
x→0

f(x)g(x) = lim
x→0

1 = 1 6= 0

(Notice that g is unbounded! As the next exercise shows, this claim would be true if g were required
to be bounded.)

Problem (4.2.7). Let g : A → R and assume that f is a bounded function on A. Show that if
limx→c g(x) = 0, then limx→c g(x)f(x) = 0 as well.
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Proof. Let g and f be real-valued functions on A with f bounded by M > 0. Then, assume that
limx→c g(x) = 0. Let ε > 0. Now, since limx→c g(x) = 0 there exists a δ > 0 such that for
0 < |x− c| < δ we have |g(x)| < ε

M
. Then, for 0 < |x− c| < δ we have:

|g(x)f(x)| = |g(x)||f(x)| ≤ |g(x)|M <
ε

M
M = ε

Thus, limx→c g(x)f(x) = 0.

Problem (4.3.6). Provide an example of each or explain why the request is impossible.

(a) Two functions f and g, neither of which is continuous at 0 but such that f(x)g(x) and
f(x) + g(x) are continuous at 0.

(b) A function f(x) continuous at 0 and g(x) not continuous at 0 such that f(x) + g(x) is
continuous at 0.

(c) A function f(x) continuous at 0 and g(x) not continuous at 0 such that f(x)g(x) is continuous
at 0.

(d) A function f(x) not continuous at 0 such that f(x) + 1
f(x) is continuous at 0.

(e) A function f(x) not continuous at 0 such that f(x)3 is continuous at 0.

Proof. For (a), let f(x) be Dirichlet’s function and let g(x) be as follows:

g(x) =

0 if x ∈ Q
1 if x 6∈ Q

Then, neither f(x) nor g(x) is continuous at 0, but f(x)g(x) = 0 and f(x) + g(x) = 1 are both
constant and hence continuous at 0.

For (b), let f(x) be continuous at 0, and let g(x) not be continuous at 0. Now, suppose f(x)+g(x)
is continuous at 0. However, then since the difference of continuous functions is continuous, we
have that f(x)− (f(x) + g(x)) = g(x) is continuous at 0, which is a contradiction and hence the
request is impossible.

For (c), we can let f(x) = 0 and let g(x) be Dirichlet’s function. Then, f(x) is continuous
everywhere and hence at 0, while g(x) is nowhere continuous and hence not at 0. But, f(x)g(x) = 0,
which is continuous at 0.

For (d), let f(x) be as follows:

g(x) =


1
2 if x < 0
2 if x ≥ 0

Then, f(x) is not continuous at 0, but f(x) + 1
f(x) = 5

2 is constant and hence continuous at 0.

For (e), let f(x) be not continuous at 0. Now, suppose that f(x)3 is continuous at 0. Then, since
3
√
x is continuous on R and the composition of functions is continuous, we have that 3

√
f(x)3 = f(x)

is continuous at 0, which is a contradiction and hence the request is impossible.

Problem (4.3.13). Let f be a function defined on all of R that satisfies the additive condition
f(x+ y) = f(x) + f(y) for all x, y ∈ R.

(a) Show that f(0) = 0 and that f(−x) = −f(x) for all x ∈ R.
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(b) Let k = f(1), Show that f(n) = kn for all n ∈ N, and then prove that f(z) = kz for all
x ∈ Z. Now prove that f(r) = kr for any rational number r.

(c) Show that if f is continuous at x = 0, then f is continuous at every point in R and conclude
that f(x) = kx for all x ∈ R. Thus, any additive function that is continuous at x = 0 must
necessarily be a linear function through the origin.

Proof. For (a), if we let x = y = 0, then we have f(0) = f(x+ y) = f(x) + f(y) = f(0) + f(0).
Subtracting f(0) on both sides, we obtain f(0) = 0. Furthermore, if y = −x, then we have
0 = f(0) = f(x− x) = f(x) + f(−x) and hence f(−x) = −f(x).

For (b), we first note that f(n) = kn holds when k = 1. Now suppose that f(n) = kn holds for n.
Then, we have:

f(n+ 1) = f(n) + f(1) = kn+ k = (k + 1)n

Thus, the formula holds for n+1, whenever it holds for n, and since it holds for n = 1, by induction
it holds for all n ∈ N. Note that by (a), f(0) = 0 so that it also holds for 0. Now, consider z ∈ Z
with z < 0.We must have z = −n, for some n ∈ N so that:

f(z) = f(−n) = −f(n) = −kn = zk

So, it holds for all z ∈ Z. Finally, consider r ∈ Q. Then r = p
q
, where p, q ∈ Z (and q 6= 0). So,

we have:
kp = f(p) = f

(
q
p

q

)
= qf

(
p

q

)
= qf(r)

Thus, diving by q, we obtain f(r) = k p
q

= kr.

For (c), assume that f is continuous at 0. Then, consider some other point c ∈ R, and let ε > 0.
Then, since f is continuous at 0 we can find a δ > 0 such that |x| < δ implies |f(x)| < ε. Now,
consider |x− c| < δ. This implies that |f(x− c)| < ε and hence |f(x)− f(c)| < ε, by part (a) and
our assumption that f is additive. Thus, f is continuous at c and hence continuous on R.

Now, consider some irrational i ∈ I, take a sequences of rationals rn → i. Then, since f is
continuous on R we must have that f(rn)→ f(i). By part (c), f(rn) = krn → ki and furthermore
f(i) = ki. Thus, f(x) = kx for all x ∈ R.

Problem (4.4.7). Prove that f(x) =
√
x is uniformly continuous on [0,∞).

Proof. Given ε > 0, let δ = ε2 and consider x and y with |x− y| < δ. Now, either
√
x +√y < ε

or
√
x+√y ≥ ε. If

√
x+√y < ε, then, we have:

|
√
x−√y| ≤ |

√
x|+ |√y| =

√
x+√y < ε

If on the other hand,
√
x+√y ≥ ε, then we have:

|
√
x−√y| = |

√
x−√y| ·

|
√
x+√y|

|
√
x+√y| = |x− y|√

x+√y ≤
|x− y|
ε

<
δ

ε
= ε

So, either way |
√
x−√y| < ε, whenever |x− y| < δ, and hence

√
x is uniformly continuous.

Problem (4.4.11). Show that g is continuous if and only if g−1(O) is open whenever O ⊆ R is an
open set.
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Proof. First, assume that g is continuous. Let O be open and let x ∈ g−1(O). Then, g(x) ∈ O
and since O is open there exists a ε > 0 such that Vε(g(x)) ⊆ O. Now, since g is continuous,
there exists δ > 0 such that whenever y ∈ Vδ(x) it follows that g(y) ∈ Vε(g(x)). In particular, this
implies that g(Vδ(x)) ⊆ Vε(g(x)) ⊆ O and hence Vδ(x) ⊆ g−1(O). Thus, given x ∈ g−1(O), we
can find an open neighborhood Vδ(x) in g−1(O) and hence g−1(O) is open.

Next, assume that whenever O is open it follows that g−1(O) is open. Now, let ε > 0. Then, since
Vε(g(x)) is open, g−1(Vε(g(x))) is also open. Since g−1(Vε(g(x))) is open and x ∈ g−1(Vε(g(x))),
there is some Vδ(x) ⊂ g−1(Vε(g(x))), which shows that g is continuous by the topological definition.

Problem (4.5.2). Provide an example of each of the following, or explain why the request is
impossible.

(a) A continuous function defined on an open interval with range equal to a closed interval.
(b) A continuous function defined on a closed interval with range equal to an open interval.
(c) A continuous function defined on an open interval with range equal to an unbounded closed

set different from R.
(d) A continuous function defined on all of R with range equal to Q.

Proof. For (a), let f be a function on (0, 1) defined by f(x) = 0. Then, the range f((0, 1)) = [0, 0]
is a closed interval.

For (b), the request is impossible since closed intervals are compact and the image of a compact
set is compact and hence the range must be compact.

For (c), let f be a function on (0, 1) defined by f(x) =
(

1
x

) (
1

1−x

)
. Then, the range of f is clearly

unbounded. Furthermore, on (0, 1), if m(x) = min{x, 1−x}, then f(x) ≥ 1
m(x)2 . In particular, the

minimum value of f(x) occurs when x = 1− x, that is x = 1
2 . Since 1

2 ∈ (0, 1), we have that the
range f((0, 1)) = [4,∞) is closed.

For (d), the request is impossible since the image of connected sets must be connect and R is
connected while Q is not.

Problem (4.5.7). Let f be a continuous function on the closed interval [0, 1] with range also
contained in [0, 1]. Prove that f must have a fixed point; that is, show f(x) = x for at least one
value of x ∈ [0, 1].

Proof. Let f be a continuous function on [0, 1]. Then, since f is continuous and [0, 1] is compact
and connected, we must have that f([0, 1]) is compact and connected. In particular, there must be
a, b ∈ R such that f([0, 1]) = [a, b]. Since f([0, 1]) ⊆ [0, 1], we also have that a, b ∈ [0, 1].

Now, consider the function g(x) = f(x)−x on [0, 1]. We have g(0) = a and g(1) = b−1. If either
a = 0 or b = 1, then we have a fixed point. So, we just need to consider the case when a > 0 and
b < 1. Then, the range of g(x) = [b − 1, a] contains 0 in its interior. So, by the IVT there exists
c ∈ [0, 1] such that g(c) = 0. Finally, g(c) = f(c) − c = 0 implies that f(c) = c so that f has a
fixed point for this case as well.

Problem (4.6.1). Using modifications of Dirichlet’s and Thomae’s functions, construct a function
f : R→ R so that:
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(a) Df = Zc

(b) Df = {x : 0 < x ≤ 1}

Proof. For (a), consider the following function:

f(x) =

sin(πx) if x ∈ Q
0 if x 6∈ Q

For any x ∈ Zc, we have sin(πx) 6= 0. Furthermore, any rational sequence converging to x will
converge to 0 and hence f is not continuous at x. Now, for x ∈ Z, we have sin(πx) = 0,
and furthermore, since the modified Dirichlet function is continuous at 0, it follows that f(x) is
continuous at x.

For (b), consider the following function:

f(x) =

x if x ∈ Q and 0 ≤ x ≤ 1
0 if x 6∈ Q or x < 0 or x > 1

For x < 0 and x > 1, f(x) is constant and hence continuous. On the interval [0, 1], the function
agrees with the modified Dirichlet function. This along with the fact that f(x) = 0 for x ≤ 0
implies that f(x) is continuous at 0. The left hand limit is clearly 0 and the right hand limit is 0
since the modified Dirichlet function is continuous at 0.

Problem (4.6.2). Given a countable set A = {a1, a2, a3, . . . }, define f(an) = 1
n

and f(x) = 0 for
all x 6∈ A. Find Df .

Proof. Suppose x ∈ A, then for n ∈ N consider (x− 1
n
, x+ 1

n
). Since A has only countably many

points and any interval in R has uncountably many points there must be some xn ∈ (x− 1
n
, x+ 1

n
)

that is not in A. Now, since 1
n
→ 0, it follows that xn → x. Furthermore, since xn 6∈ A we have

that f(xn) = 0 for all n and hence f(xn)→ 0. However, since x ∈ A, we have f(x) 6= 0 and hence
f is not continuous at x.

Now, consider x 6∈ A and consider an arbitrary sequence (xn) → x. If (xn) contains finitely many
points of A, then f(xn) will be eventually 0 and hence converge to 0. On the other hand, suppose
that (xn) contains infinitely many points of A. Let ε > 0 and let N1 ∈ N be large enough such
that ε > 1

N1
. Now, suppose that ni is the index of the i-th element of A as an element of (xn)

(assuming that xni
∈ A). For example, if a3 ∈ (xn), then there is some n3 such that xn3 = a3.

Then, consider:
N2 = max{ni : i < N1}

So, for n ≥ N2, if xn ∈ A it follows that the index of xn in A is great than N1 and hence
f(xn) ≤ 1

N1
< ε. If xn 6∈ A, then f(x) = 0 < ε. So, either way f(xn) < ε and hence f(xn)→ 0.

Since xn was arbitrary, it follows that limy→x f(y) = 0 = f(x) and hence f is continuous at x. In
summary, we have Df = A, that is f is continuous on Ac.
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