Homework Solutions #3

CAS MA 511

Problem (3.4.1)**.** If *P* is a perfect set and *K* is compact, is the intersection *P* ∩*K* always compact? Always perfect?

Proof. Since *P* is closed and *K* is closed, *P* ∩ *K* is closed. Furthermore, since *K* is bounded and *P* ∩ *K* ⊆ *K*, *P* ∩ *K* is bounded and hence compact. If *P* is nonempty and $p \in P$ and if $K = \{p\}$, then $P \cap K = \{p\}$ has an isolated point and hence is not perfect. So, $P \cap K$ must be closed, but is not necessarily perfect. \Box

Problem (3.4.4). Repeat the Cantor construction from Section 3.1 starting with the interval [0, 1]. This time however, remove the open middle fourth from each component.

- (a) Is the resulting set compact? Perfect?
- (b) Using the algorithms from Section 3.1, compute the length and dimension of this Cantor-like set.

Proof. For (a), let $\tilde{C}_0 = [0,1]$ and let $\tilde{C}_1 = [0,\frac{3}{8}]$ $\frac{3}{8}$] ∪ $\left[\frac{5}{8}\right]$ $\frac{5}{8}$, 1] be the result of removing the open middle fourth of \tilde{C}_0 . Continuing this way we obtain a sequence of sets \tilde{C}_n . Each \tilde{C}_n is closed and hence the countable union

$$
\tilde{C} = \bigcap_{n=1}^{\infty} \tilde{C}_n
$$

is closed. Furthermore, we have $\tilde{C} \subseteq [0,1]$, so \tilde{C} is bounded and hence compact.

Now, let $x\in \tilde{C}$. Then, for $n\in \mathbb{N}$, since $x\in \tilde{C}$, we have $x\in \tilde{C}_n$ for each n . Since $x\in \tilde{C}_n$, which is the finite union of 2^{n-1} closed intervals of length $\frac{1}{4}$ $\frac{3}{2}$ 8 \int^{n-1} , it must lie in one such interval. Let x_n be one of the endpoints of that interval such that $x_n\neq x$. Thus, we obtain a sequence (x_n) with $x_n \neq x$ such that $0 \leq |x_n - x| \leq \frac{1}{4}$ $\sqrt{3}$ 8 \int^{n-1} . Now, since $\frac{1}{4}$ $\sqrt{3}$ 8 $n^{-1} \rightarrow 0$, by the order limit theorem $|x_n-x|\to 0$ and hence $(x_n)\to x.$ Thus, x is a limit point and since x was arbitrary this implies that \tilde{C} has no isolated points and is therefore perfect.

For (b), at each step we remove 2^{n-1} open intervals whose length is $\frac{1}{4}$ $\sqrt{3}$ 8 $n-1$, so the remaining length is:

$$
1 - \frac{1}{4} - 2\frac{1}{4}\frac{3}{8} - 4\frac{1}{4}\left(\frac{3}{8}\right)^2 - \dots = 1 - \sum_{n=1}^{\infty} 2^{n-1} \left(\frac{3}{8}\right)^{n-1} \frac{1}{4} = 1 - \frac{\frac{1}{4}}{1 - \frac{3}{4}} = 1 - 1 = 0
$$

So, the length of \tilde{C} is $0.$ Now, if we scale every real number by a factor of of $\frac{8}{3}$, then we get 2 copies of \tilde{C} , so the dimension of \tilde{C} is $\frac{\log 2}{\log \frac{8}{3}} \approx 0.707$. \Box

Problem (3.5.2). Replace each with the word finite or countable, depending on which is more appropriate.

- (a) The <u>same union of F_{σ} sets is an F_{σ} set.</u>
- (b) The <u>intersection of F_σ sets is an F_σ set.</u>
- (c) The <u>union</u> of G_{δ} sets is an G_{δ} set.
- (d) The <u>intersection</u> of G_δ sets is an G_δ set.

Proof. For (a), the countable union of F_{σ} sets is an F_{σ} set. Let $A_n = \bigcup_{m=1}^{\infty} A_{n,m}$ be an F_{σ} set. Then, we have: \sim

$$
\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} A_{n,m} = \bigcup_{\{(n,m): n,m \in \mathbb{N}\}} A_{n,m}
$$

So, we just need to show that $\{(n,m):n,m\in\mathbb{N}\}$ is countable. We can lay out the elements of this set as follows:

Now, just as we did for $\mathbb Q$ we can snake back and forth starting at the top left to form a bijection between this set and N. The only difference is that we do not need to skip any pairs, since while $(1,1)$ and $(2,2)$ would correspond to the same fraction it need not be the case that $A_{1,1} = A_{2,2}$. Another way to state this fact is that $F_{\sigma\sigma} = F_{\sigma}$.

For (b), the finite intersection of F_{σ} sets is an F_{σ} set. If we show that the intersection of two F_{σ} sets is F_{σ} , then it will hold for any finite intersection by induction. If A and B are F_{σ} , then we have:

$$
A \cap B = \left(\bigcup_{n=1}^{\infty} A_n\right) \cap \left(\bigcup_{m=1}^{\infty} B_m\right) = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} A_n \cap B_m
$$

Thus, $A \cap B$ is indeed F_{σ} . If we took a countable intersection and tried to write it as a union it would require an uncountable index set, which is a bit tricky. Instead, we will show that the countable intersection of F_{σ} sets need not be F_{σ} using a proof by contradiction.

Suppose for contradiction that the countable intersection of F_{σ} sets is F_{σ} . Now, let *A* be a G_{δ} set, that is *A* is the countable intersection of open sets. Since open sets are *Fσ*, it follows that *A* is the countable intersection of F_{σ} sets and hence is F_{σ} by our induction. So, we have shown that any G_{δ} set is F_{σ} , however this is a contradiction since the set of irrationals II is a G_{δ} set, but not an F_{σ} set. Thus, the countable intersection of F_{σ} sets need not be F_{σ} .

For (c), the finite union of *G^δ* sets is an *F^σ* set. This follows from (*a*) and De Morgan's laws.

For (d), the countable intersection of *G^δ* sets is an *F^σ* set. This follows from (*b*) and De Morgan's laws. \Box

Problem (3.5.10). Prove that the set of real numbers R cannot be written as the countable union of nowhere-dense sets.

Proof. Suppose for contradiction that $\mathbb R$ can be written as the countable union of nowhere-dense sets. That is, there are nowhere-dense sets E_1, E_2, E_3, \ldots such that $\bigcup_{n=1}^{\infty} E_n = \mathbb{R}$. Then, for each *E*^{*n*}, we have *E*^{*n*} ⊆ $\overline{E_n}$ ⊆ ℝ. Thus, we have:

$$
\mathbb{R} = \bigcup_{n=1}^{\infty} E_n \subseteq \bigcup_{n=1}^{\infty} \overline{E}_n \subseteq \mathbb{R}
$$

However, this implies that $\mathbb{R}=\bigcup_{n=1}^\infty \overline{E}_n.$ Then, taking complements, we have:

$$
\emptyset = \mathbb{R}^c = \left(\bigcup_{n=1}^{\infty} \overline{E}_n\right)^c = \bigcap_{n=1}^{\infty} \overline{E}_n^c
$$

Now, by exercise 3.5.8, each \overline{E}^c_{τ} $\frac{c}{n}$ is dense in \R . Thus, by theorem 3.5.2, the above intersection should be non-empty, so we have a contradiction, and we are forced to conclude that there are no such sets E_1, E_2, E_3, \ldots . \Box

Problem (4.2.6)**.** Decide if the following claims are true or false, and give short justifications for each conclusion.

- (a) If a particular *δ* has been constructed as a suitable response to a particular *ε* challenge, then any smaller positive *δ* sill also suffice.
- (b) If $\lim_{x\to a} f(x) = L$ and *a* happens to be in the domain of f, then $L = f(a)$.
- (c) If $\lim_{x \to a} f(x) = L$, then $\lim_{x \to a} 3[f(x) 2]^2 = 3(L 2)^2$.
- (d) If $\lim_{x\to a} f(x) = 0$, then $\lim_{x\to a} f(x)g(x) = 0$, for any function g (with domain equal to the domain of *f*).

Proof. For (a), the claim is true. Suppose that given *ε >* 0, we have some *δ >* 0 such that whenever $0 < |x - c| < \delta$ it follows that $|f(x) - L| < \varepsilon$. Now consider $0 < \delta' < \delta$. Then, whenever we have $0 < |x - c| < \delta'$ it follows that $0 < |x - c| < \delta$ and hence $|f(x) - L| < \varepsilon$.

For (b), the claim is false. Let $f(x)$ be as follows:

$$
f(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}
$$

Then, $\lim_{x\to 0} f(x) = 0$, but $f(0) = 1$.

For (c), the claim is true. If $\lim_{x\to a} f(x) = L$, then by the algebraic limit theorem for functional limits it follows that:

$$
\lim_{x \to a} 3[f(x) - 2]^2 = 3 \left(\lim_{x \to a} f(x) - \lim_{x \to a} 2 \right) \left(\lim_{x \to a} f(x) - \lim_{x \to a} 2 \right)
$$

$$
= 3(L - 2)(L - 2)
$$

$$
= 3(L - 2)^2
$$

For (d), the claim is false. Let $f(x) = x$ on $(0,1)$ and let $g(x) = \frac{1}{x}$ on the same domain. Then, $\lim_{x\to 0} f(x) = 0$, but we have:

$$
\lim_{x \to 0} f(x)g(x) = \lim_{x \to 0} 1 = 1 \neq 0
$$

(Notice that *g* is unbounded! As the next exercise shows, this claim would be true if *g* were required to be bounded.) \Box

Problem (4.2.7). Let $g : A \to \mathbb{R}$ and assume that f is a bounded function on A . Show that if $\lim_{x\to c} g(x) = 0$, then $\lim_{x\to c} g(x) f(x) = 0$ as well.

Proof. Let *g* and *f* be real-valued functions on *A* with *f* bounded by *M >* 0. Then, assume that $\lim_{x\to c} g(x) = 0$. Let $\varepsilon > 0$. Now, since $\lim_{x\to c} g(x) = 0$ there exists a $\delta > 0$ such that for $0 < |x - c| < \delta$ we have $|g(x)| < \frac{\varepsilon}{\hbar}$ $\frac{\varepsilon}{M}$. Then, for $0 < |x - c| < \delta$ we have:

$$
|g(x)f(x)| = |g(x)||f(x)| \le |g(x)|M < \frac{\varepsilon}{M}M = \varepsilon
$$

Thus, $\lim_{x\to c} g(x) f(x) = 0$.

Problem (4.3.6). Provide an example of each or explain why the request is impossible.

- (a) Two functions f and q, neither of which is continuous at 0 but such that $f(x)q(x)$ and $f(x) + q(x)$ are continuous at 0.
- (b) A function $f(x)$ continuous at 0 and $g(x)$ not continuous at 0 such that $f(x) + g(x)$ is continuous at 0.
- (c) A function $f(x)$ continuous at 0 and $g(x)$ not continuous at 0 such that $f(x)g(x)$ is continuous at 0.
- (d) A function $f(x)$ not continuous at 0 such that $f(x) + \frac{1}{f(x)}$ is continuous at 0 .
- (e) A function $f(x)$ not continuous at 0 such that $f(x)^3$ is continuous at 0.

Proof. For (a), let $f(x)$ be Dirichlet's function and let $q(x)$ be as follows:

$$
g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \notin \mathbb{Q} \end{cases}
$$

Then, neither $f(x)$ nor $g(x)$ is continuous at 0, but $f(x)g(x) = 0$ and $f(x) + g(x) = 1$ are both constant and hence continuous at 0.

For (b), let $f(x)$ be continuous at 0, and let $g(x)$ not be continuous at 0. Now, suppose $f(x)+g(x)$ is continuous at 0. However, then since the difference of continuous functions is continuous, we have that $f(x) - (f(x) + g(x)) = g(x)$ is continuous at 0, which is a contradiction and hence the request is impossible.

For (c), we can let $f(x) = 0$ and let $g(x)$ be Dirichlet's function. Then, $f(x)$ is continuous everywhere and hence at 0, while $q(x)$ is nowhere continuous and hence not at 0. But, $f(x)q(x) = 0$, which is continuous at 0.

For (d), let $f(x)$ be as follows:

$$
g(x) = \begin{cases} \frac{1}{2} & \text{if } x < 0\\ 2 & \text{if } x \ge 0 \end{cases}
$$

Then, $f(x)$ is not continuous at 0 , but $f(x) + \frac{1}{f(x)} = \frac{5}{2}$ $\frac{5}{2}$ is constant and hence continuous at $0.$

For (e), let $f(x)$ be not continuous at 0 . Now, suppose that $f(x)^3$ is continuous at 0 . Then, since $\sqrt[3]{x}$ is continuous on R and the composition of functions is continuous, we have that $\sqrt[3]{f(x)^3} = f(x)$ is continuous at 0, which is a contradiction and hence the request is impossible. \Box

Problem (4.3.13). Let *f* be a function defined on all of $\mathbb R$ that satisfies the additive condition $f(x + y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$.

(a) Show that $f(0) = 0$ and that $f(-x) = -f(x)$ for all $x \in \mathbb{R}$.

 \Box

- (b) Let $k = f(1)$, Show that $f(n) = kn$ for all $n \in \mathbb{N}$, and then prove that $f(z) = kz$ for all $x \in \mathbb{Z}$. Now prove that $f(r) = kr$ for any rational number *r*.
- (c) Show that if f is continuous at $x = 0$, then f is continuous at every point in R and conclude that $f(x) = kx$ for all $x \in \mathbb{R}$. Thus, any additive function that is continuous at $x = 0$ must necessarily be a linear function through the origin.

Proof. For (a), if we let $x = y = 0$, then we have $f(0) = f(x + y) = f(x) + f(y) = f(0) + f(0)$. Subtracting $f(0)$ on both sides, we obtain $f(0) = 0$. Furthermore, if $y = -x$, then we have $0 = f(0) = f(x - x) = f(x) + f(-x)$ and hence $f(-x) = -f(x)$.

For (b), we first note that $f(n) = kn$ holds when $k = 1$. Now suppose that $f(n) = kn$ holds for *n*. Then, we have:

$$
f(n + 1) = f(n) + f(1) = kn + k = (k + 1)n
$$

Thus, the formula holds for $n+1$, whenever it holds for n , and since it holds for $n=1$, by induction it holds for all $n \in \mathbb{N}$. Note that by (a), $f(0) = 0$ so that it also holds for 0. Now, consider $z \in \mathbb{Z}$ with $z < 0$. We must have $z = -n$, for some $n \in \mathbb{N}$ so that:

$$
f(z) = f(-n) = -f(n) = -kn = zk
$$

So, it holds for all $z \in \mathbb{Z}$. Finally, consider $r \in \mathbb{Q}$. Then $r = \frac{p}{q}$ $\frac{p}{q}$, where $p, q \in \mathbb{Z}$ (and $q \neq 0$). So, we have:

$$
kp = f(p) = f\left(q\frac{p}{q}\right) = qf\left(\frac{p}{q}\right) = qf(r)
$$

Thus, diving by *q*, we obtain $f(r) = k\frac{p}{q} = kr$.

For (c), assume that *f* is continuous at 0. Then, consider some other point *c* ∈ R, and let *ε >* 0. Then, since f is continuous at 0 we can find a $\delta > 0$ such that $|x| < \delta$ implies $|f(x)| < \varepsilon$. Now, consider $|x - c| < \delta$. This implies that $|f(x - c)| < \varepsilon$ and hence $|f(x) - f(c)| < \varepsilon$, by part (a) and our assumption that *f* is additive. Thus, *f* is continuous at *c* and hence continuous on R.

Now, consider some irrational $i \in \mathbb{I}$, take a sequences of rationals $r_n \to i$. Then, since f is continuous on R we must have that $f(r_n) \to f(i)$. By part (c), $f(r_n) = kr_n \to ki$ and furthermore $f(i) = ki$. Thus, $f(x) = kx$ for all $x \in \mathbb{R}$. \Box

Problem (4.4.7). Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Proof. Given $\varepsilon > 0$, let $\delta = \varepsilon^2$ and consider x and y with $|x-y| < \delta$. Now, either $\sqrt{x} + \sqrt{y} < \varepsilon$ *Cribot*: Given $\varepsilon > 0$, fet $\theta = \varepsilon$ and consider *x* and $\cos \sqrt{x} + \sqrt{y} \ge \varepsilon$. If $\sqrt{x} + \sqrt{y} < \varepsilon$, then, we have:

$$
|\sqrt{x} - \sqrt{y}| \le |\sqrt{x}| + |\sqrt{y}| = \sqrt{x} + \sqrt{y} < \varepsilon
$$

If on the other hand, $\sqrt{x} + \sqrt{y} \geq \varepsilon$, then we have:

$$
|\sqrt{x} - \sqrt{y}| = |\sqrt{x} - \sqrt{y}| \cdot \frac{|\sqrt{x} + \sqrt{y}|}{|\sqrt{x} + \sqrt{y}|} = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{|x - y|}{\varepsilon} < \frac{\delta}{\varepsilon} = \varepsilon
$$

√ $\sqrt{x} - √y| < ε$, whenever $|x - y| < δ$, and hence \sqrt{x} is uniformly continuous. So, either way \mid \Box

Problem (4.4.11). Show that *g* is continuous if and only if $g^{-1}(O)$ is open whenever $O \subseteq \mathbb{R}$ is an open set.

Proof. First, assume that *g* is continuous. Let *O* be open and let $x \in g^{-1}(O)$. Then, $g(x) \in O$ and since O is open there exists a $\varepsilon > 0$ such that $V_{\varepsilon}(g(x)) \subseteq O$. Now, since g is continuous, there exists $\delta > 0$ such that whenever $y \in V_{\delta}(x)$ it follows that $g(y) \in V_{\epsilon}(g(x))$. In particular, this i implies that $g(V_\delta(x))\subseteq V_\varepsilon(g(x))\subseteq O$ and hence $V_\delta(x)\subseteq g^{-1}(O).$ Thus, given $x\in g^{-1}(O),$ we can find an open neighborhood $V_\delta(x)$ in $g^{-1}(O)$ and hence $g^{-1}(O)$ is open.

Next, assume that whenever O is open it follows that $g^{-1}(O)$ is open. Now, let $\varepsilon >0.$ Then, since $V_\varepsilon(g(x))$ is open, $g^{-1}(V_\varepsilon(g(x)))$ is also open. Since $g^{-1}(V_\varepsilon(g(x)))$ is open and $x\in g^{-1}(V_\varepsilon(g(x))),$ there is some $V_\delta(x)\subset g^{-1}(V_\varepsilon(g(x))),$ which shows that g is continuous by the topological definition. \Box

Problem (4.5.2)**.** Provide an example of each of the following, or explain why the request is impossible.

- (a) A continuous function defined on an open interval with range equal to a closed interval.
- (b) A continuous function defined on a closed interval with range equal to an open interval.
- (c) A continuous function defined on an open interval with range equal to an unbounded closed set different from R.
- (d) A continuous function defined on all of $\mathbb R$ with range equal to $\mathbb Q$.

Proof. For (a), let f be a function on $(0, 1)$ defined by $f(x) = 0$. Then, the range $f((0, 1)) = [0, 0]$ is a closed interval.

For (b), the request is impossible since closed intervals are compact and the image of a compact set is compact and hence the range must be compact.

For (c), let f be a function on $(0,1)$ defined by $f(x) = \left(\frac{1}{x}\right)^{x}$ *x* $\frac{1}{2}$ 1−*x* . Then, the range of *f* is clearly unbounded. Furthermore, on $(0, 1)$, if $m(x) = \min\{x, 1-x\}$, then $f(x) \ge \frac{1}{m(x)}$ $\frac{1}{m(x)^2}.$ In particular, the minimum value of $f(x)$ occurs when $x = 1 - x$, that is $x = \frac{1}{2}$ $\frac{1}{2}.$ Since $\frac{1}{2} \in (0,1)$, we have that the range $f((0,1)) = [4,\infty)$ is closed.

For (d), the request is impossible since the image of connected sets must be connect and $\mathbb R$ is connected while Q is not. \Box

Problem (4.5.7). Let f be a continuous function on the closed interval [0, 1] with range also contained in [0, 1]. Prove that f must have a fixed point; that is, show $f(x) = x$ for at least one value of $x \in [0, 1]$.

Proof. Let *f* be a continuous function on [0*,* 1]. Then, since *f* is continuous and [0*,* 1] is compact and connected, we must have that $f([0, 1])$ is compact and connected. In particular, there must be *a, b* ∈ R such that $f([0, 1]) = [a, b]$. Since $f([0, 1])$ ⊂ [0*,* 1], we also have that $a, b \in [0, 1]$.

Now, consider the function $q(x) = f(x) - x$ on [0, 1]. We have $q(0) = a$ and $q(1) = b - 1$. If either $a = 0$ or $b = 1$, then we have a fixed point. So, we just need to consider the case when $a > 0$ and $b < 1$. Then, the range of $g(x) = [b-1, a]$ contains 0 in its interior. So, by the IVT there exists *c* ∈ [0, 1] such that $g(c) = 0$. Finally, $g(c) = f(c) - c = 0$ implies that $f(c) = c$ so that *f* has a fixed point for this case as well. \Box

Problem (4.6.1)**.** Using modifications of Dirichlet's and Thomae's functions, construct a function $f : \mathbb{R} \to \mathbb{R}$ so that:

(a) $D_f = \mathbb{Z}^c$ (b) $D_f = \{x : 0 < x < 1\}$

Proof. For (a), consider the following function:

$$
f(x) = \begin{cases} \sin(\pi x) & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}
$$

For any $x \in \mathbb{Z}^c$, we have $\sin(\pi x) \neq 0$. Furthermore, any rational sequence converging to x will converge to 0 and hence f is not continuous at x. Now, for $x \in \mathbb{Z}$, we have $\sin(\pi x) = 0$, and furthermore, since the modified Dirichlet function is continuous at 0, it follows that *f*(*x*) is continuous at *x*.

For (b), consider the following function:

$$
f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \text{ and } 0 \le x \le 1 \\ 0 & \text{if } x \notin \mathbb{Q} \text{ or } x < 0 \text{ or } x > 1 \end{cases}
$$

For $x < 0$ and $x > 1$, $f(x)$ is constant and hence continuous. On the interval [0, 1], the function agrees with the modified Dirichlet function. This along with the fact that $f(x) = 0$ for $x \le 0$ implies that $f(x)$ is continuous at 0. The left hand limit is clearly 0 and the right hand limit is 0 since the modified Dirichlet function is continuous at 0. \Box

Problem (4.6.2). Given a countable set $A = \{a_1, a_2, a_3, \dots\}$, define $f(a_n) = \frac{1}{n}$ and $f(x) = 0$ for all $x \notin A$. Find D_f .

Proof. Suppose $x \in A$, then for $n \in \mathbb{N}$ consider $(x - \frac{1}{n})$ $\frac{1}{n}$, $x + \frac{1}{n}$ $\frac{1}{n}$). Since A has only countably many points and any interval in \R has uncountably many points there must be some $x_n \in (x - \frac{1}{n})$ $\frac{1}{n}$, $x + \frac{1}{n}$ $\frac{1}{n}$ that is not in A . Now, since $\frac{1}{n}\to 0$, it follows that $x_n\to x$. Furthermore, since $x_n\not\in A$ we have that $f(x_n) = 0$ for all *n* and hence $f(x_n) \to 0$. However, since $x \in A$, we have $f(x) \neq 0$ and hence *f* is not continuous at *x*.

Now, consider $x \notin A$ and consider an arbitrary sequence $(x_n) \to x$. If (x_n) contains finitely many points of A, then $f(x_n)$ will be eventually 0 and hence converge to 0. On the other hand, suppose that (x_n) contains infinitely many points of A. Let $\varepsilon > 0$ and let $N_1 \in \mathbb{N}$ be large enough such that $\varepsilon > \frac{1}{N_1}$. Now, suppose that n_i is the index of the *i*-th element of *A* as an element of (x_n) (assuming that $x_{n_i} \in A$). For example, if $a_3 \in (x_n)$, then there is some n_3 such that $x_{n_3} = a_3$. Then, consider:

$$
N_2 = \max\{n_i : i < N_1\}
$$

So, for $n \geq N_2$, if $x_n \in A$ it follows that the index of x_n in A is great than N_1 and hence $f(x_n) \leq \frac{1}{N}$ $\frac{1}{N_1}$ < *ε*. If $x_n \notin A$, then $f(x) = 0 < \varepsilon$. So, either way $f(x_n) < \varepsilon$ and hence $f(x_n) \to 0$. Since x_n was arbitrary, it follows that $\lim_{y\to x} f(y) = 0 = f(x)$ and hence f is continuous at x. In summary, we have $D_f = A$, that is f is continuous on A^c . \Box