Homework Solutions #4
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Problem (5.2.2). (a) is possible. Consider f(x) to be the Dirichlet function and

0 ifze@Q
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(b) is possible. Consider g(z) = x and

B i if x #0
f(x)_{1 if 2 =0

(c) is impossible. If g and f + g are differentiable, then by the algebraic differentiability theorem,
the difference (f + g) — g = f must be differentiable.

(d) is possible. Let d(x) be the Dirichlet function and consider f(z) = z?d(x). If f(x) were
differentiable at any point other than 0, then it would be continuous at that point and hence
% = d(z) would be continuous which is a contradiction. So, now we just need to show that f(x)
is indeed differentiable at x = 0. We have:
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Thus, f(z) is differentiable at z = 0 (and you can see why we needed to multiply by z2.)
Problem (5.2.3). For (a), we have:
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Thus, W (z) = —5.
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For (b), from part (a) and the chain rule, we have:
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Thus, by theorem 5.2.4 part (iii), we have:
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1 f(x)g(e) — f(e)g(e) + fle)gle) — fle)g(x) 1 f@) = fle) 0 9) = g(c)
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Now, when we take a limit as x — ¢, we have:

1 (f(fff) — 1) (o) — o088 = 9(0)> _ f'@)g(x) — f(2)g'(z)

T—c T—c l9()]?

Problem (5.2.12). Let f : [a,b] — R be continuous and differentiable on its domain, with f'(z) #
0. Then there exists a function f~! defined on its range by f~!(y) = x where f(x) = y. Thus, by
the chain rule:
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where y = f(z). The second to last equality is where we use that f’(z) # 0.

Problem (5.3.6). For (a), let g(x) : [0, a] — R be differentiable, suppose ¢g(0) = 0 and |¢'(x)| < M
on [0,a]. Then, for z € [0, a] by the mean value theorem, there is some 0 < ¢ < x < a such that:

v g(x) —g(0)  g(x)
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and hence |g(2)| = |¢'(c)z| < M.

For (b), suppose that h(x) : [0,a] — R is twice differentiable with A'(0) = h(0) = 0 and |h"(z)| <
M on [0, a]. If we try to apply the technique of (a), twice, we will get that i(c) < Mx?, so we will
try something different. Consider fi(z) = h(x) — M% Then, f"(z) = h"(z) — M < 0 on [0, d]
and hence by applying the mean value theorem twice, we see that fi(z) < 0 on [0,a] and hence
h(z) < MZ on [0,a]. Similarly, if we let fo(z) = h(z) + MZ, then we will find that fo(z) > 0 so
that h(z) > —M”; on [0, a] and hence |h(x)| < M% on [0, al

For (c), we can show that if I() : [0,a] — R is differentiable n times with (™ (0) = --- = I'(0) = 0
and |{™(z)| < M on [0,a], then |I(z)| < MZ:. Then, by applying the mean value theorem n times
to fi(z) = l(z) — M%; and fo(z) = I(z) + M™L: we can show that fi(z) < 0 and fo(z) > 0 on
[0, a], since we have f{™(z) = 1™ () — M < 0 and fi"”(z) = 1™ (z) + M > 0. Thus, we have
() < MZ; and I(z) > —M<2: and hence |I(z)| < MZ:. (Note that we need the ; to cancel all
of the factors introduced by taking the n derivatives of z".)

Problem (5.3.10). First, of all we have:
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since gg% —o00asx — 0and e ® — 0 as + — oo. Next, we have:
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since g(x) — 0 as x — 0. Since we have |f(z)| — 0 as x — 0, we must have that f(z) — 0 as
x — 0. Thus both f(x) and g(z) tend to 0 as x tends to 0. Now, consider the quotient:
f(z)

1
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since —x < xsin (%4) < z, which allows us to use the squeeze theorem. Finally, consider the

quotient of derivatives:
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where the second to last equality follows by two applications of the squeeze theorem. Now this
final limit diverges, since we can always find some small 2 > 0 such that -; = 2k or (2k + 1)7.

This allows us to find sequences (z,,) — 0 such that (x;l cos (ﬁ)) — 00 or —oo. This does not
contradict L'Hospital's rule, since the limit of the quotient of derivatives does not converge, so we
cannot apply it.

Problem (5.4.2). First of all, we have 0 < h(2"z) < 1, and thus we have 0 < 2%h(Q”:z:) < L

2’VL
Furthermore, we have:
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Thus, by the comparison test, > >° 2%]1(2"35) also converges.

Problem (6.2.12). For (a), we have the graphs of fi, f2, and f; below (spaced out so we can see
all 3 without overlap):
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Indeed, we observe that each is continuous, increasing and constant on [0, 1] \ C,,.

For (b), we can continue this process to obtain a sequence (f,,). Now, we want to use the Cauchy

criterion for uniform convergence. First of all, if x € [%, %}

Now, if z € {O, H then:

() = ()| = 31 Faa(32) = Fncr (82)] < 21 Faa(2)  Frnr (0)
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where the last inequality follows since each f,, is increasing. Thus, we have:

1
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where this final inequality holds since fo(x) = 2 < 1 and each 0 < f,, < 1. Since, 2—m — 0, we have
by the Cuachy criterion for uniform convergence that (f,,) converges uniformly.

For (c), let f =1lim f,,. Since each f,, is continuous, by theorem 6.2.6, f is also continuous. Now,
consider z,y € [0,1] with = < y. Then, since f, is increasing, we have f,(z) < f.(y). Taking
a limit as n — oo, we obtain that f(z) < f(y), so that f is also increasing. Since f,(0) and
f1(1) =1 for all n, we have f(0) =0 and f(1) =

Now, consider x € [0,1] \ C. Then, since C,, C C,,11, there must be some N such that = ¢ C,, for
all n > N. Then, x is in some open interval of length :%N on which f, is constant for n > N. In
particular, f is also constant on this interval and hence has f’(x) = 0. (Note that to say something
about the derivative at  we need to know what is going on in a small neighborhood around z.)
Since x was arbitrary, f'(z) =0 on [0,1] \ C.

Problem (6.2.15). Let (f,) be a bounded, equicontinuous sequence on [0, 1]. For (a), using exercise
6.2.13, since @ N [0,1] is countable and (f,) is bounded, we can produce a subsequence f,,, that
converges on ) N [0, 1]. Denote this subsequence by gj.

For (b), since (f,,) is equicontinuous, so is (gx). Thus, there exists a § > 0 such that |z — y| <
implies that |gx(z) — gr(y)| < 3-

Now, since [0, 1] is compact it can be covered in a finite number of §-neighborhoods centered at
rational points 71,...,7,. Thus, since (gx) converges to g, we can find a single N (by taking a
maximum over the finite number J-neighborhoods) such that for s, > N we have |g,(r;) —g:(r:)| <
5 for all i. If the number of points weren't finite the maximum might not exist.

For (c), for each z € [0, 1], we must have that z is in some d-neighborhood of one of the r; and
hence for s,t > N, we have:

195(2) = g:(2)]

~—

9s(x) = gs(ri) + gs(ri) = g (ri) + 9:(rs) — 94()]

< 19s(2) = geri)| + 1ge(rs) — s(ri)l + |ge(ri) — g(2)]
%+ —l—%e
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Thus, (gx) converges uniformly on [0, 1], by the Cauchy criterion.

Problem (6.3.4). For any z, we have:

1
hy, < —=0
(o) < =
and hence h,(z) — 0 regardless of z, so that the convergence is uniform. On the other hand,

consider the derivatives:
cos(nx)

i v/n cos(nzx)

Suppose to reach a contradiction that cos(nx) = 0 for all n > N, since otherwise the sequence
will be unbounded because of the y/n. In particular, cos(Nz) = 0. However, this implies that
cos(2Nz) # 0, which is a contradiction. Thus, for any x, we can find arbitrarily large n for which
cos(nz) # 0 and hence (1'(z)) = ((y/ncos(nx)) is unbounded.

h! () =n
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Problem (6.3.7). Let (f,) be a sequence of differentiable functions defined on the closed interval
[a, b], and assume (f!) converges uniformly on [a,b]. Suppose there exists = € [a, b] where f,(z0)
is convergent. Now, since f,(z) — f,,(x) is differentiable, we can apply the mean value theorem to
find some ¢ between zy and x such that:

Ju(@) = fn() = (fu(20) = fin(0))

T — X

fule) = frule) =

Now, since the derivatives converge uniformly, we can choose N such that for n, m > N; we have
that |, (c) — f}.(c)] < min{$, 55 5% } and hence:

[fu(@) = fm(@) = (fa(@0) = fru(@0))| = & = @0l[f1(c) = fru(0)] < [b—allf,(c) = fr(c)] <

Now, since (f,,) converges at xg, can choose N, such that for n,m > Ny |f,(z0) — fim(x0)|
Thus, for any = € [a,b] and n,m > max Ny, Ny, we have:

£al@) = Fnl@)] < |fal@) = Fin(@) = (Falw0) = Fanl@o))| + [fulz0) = fnlao)| < 5+ 5 = ¢

Thus, (f,) converges uniformly on [a, b].

Problem (6.5.5). For (a), we have:
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Thus, by the ratio test, >, ns"~! converges. Since this series converges, we must have ns" ! — 0
and hence this sequence must be bounded.

For (b), suppose that f(x) = %, a,z™ converges on (—R, R) and pick ¢ such that |z| <t < R.
Then, we will show that the differentiated series converges absolutely at ¢ and hence converges on
[—t, ] for any such ¢, which implies that it converges on (—R, R). Since 2 < 1, (a) says that

n <m>n_l < M for some M: t

t

M o
72t"|an|

n=1

Z Ina,z" | = Z(t"‘l\an\) (n (|:§|> : ) < Mit"‘1|an| =

n=1 n=1

Now, since f(x) = >.0°,a,z™ converges on (—R, R) it converges absolutely on [—t,t] by the-
orem 6.5.1 and theorem 6.5.2. Thus, Z"Olt”|an| converges so that by the comparison test,
S0 | |na,x™ | converges, so we are done.

Problem (6.5.8b). Suppose that f(z) = >7° ,a,x™ converges on (—R, R) and f'(z) = f(x) for
all z € (—R, R) and f(0) = 1. Then, since f'(x) = f(x), differentiating term by term, we have:

Z ax" = f(x Z na,x" " = i(n + Dapq2"

n=0

So, by the uniqueness of power series representations (i.e. 6.5.8a), we have:

an
[—
e
Now, since f(0) = 1, we have ag = 1, so that:
-1 Ap—2 ao 1
ay, = = = =—=—
n n(n—1) n!  nl

What function has this special property that f'(x) = f(x)?
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Problem (6.6.5). For (a), since f(z) = e*, we have that the Taylor coefficients are:

f™o) € 1

. nl ol

Now, let R > 0 and consider the series >°7° , %. Then, we have:

Rn+1
lim [{2ED = i =0<1

Thus, by the ratio test, this series converges. Moreover, the convergence is absolute (since the
terms are positive) so that by theorem 6.5.2, the Taylor series >°° ‘% converges uniformly on the
closed interval [—R, R].

For (b), we differentiate term by to term to compute f’(z), as follows:

fla)=3n =3 o =3 =
For (c), we have:
0o (. \n 00 1)
ep =3 S =S

Then, we have:
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