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Problem (6.7.4). First of all, we have:

f(x) = (1− x) 1
2

f ′(x) = −1
2(1− x)

−1
2

f ′′(x) = − 1
22 (1− x)

−3
2

f (3)(x) = −1 · 3
23 (1− x)

−5
2

...

f (n)(x) = −1 · 3 · 5 · · · (2n− 3)
2n

(1− x)
2n−1

2

Thus, a0 = f(0) = 1, and we have:

an = f (n)

n! = −1 · 3 · 5 · · · (2n− 3)
2n

= −1 · 3 · 5 · · · (2n− 3)
2 · 4 · 6 · · · 2n

Problem (6.7.11). Assume that f has continuous derivative on [a, b]. Then, by the Weierstrass
approximation theorem, given ε > 0 there exists some polynomial q(x) such that |f ′(x)− q(x)| <
min{ε, ε

|b−a|} ≤ ε for all x ∈ [a, b]. Now, since q(x) is a polynomial, we have:

q(x) = a0 + a1x + a2x
2 + · · ·+ anxn

We would like to let p(x) be an antiderivative of q(x), so that q(x) = p′(x). Now, we have not
formally defined antiderivatives at this point, but we know what it should be for polynomials. Define
p(x) as follows:

p(x) = C + a0x + a1
x2

2 + · · · an
xn+1

n + 1
Then, p′(x) = q(x). Note that we have free choice of C in our definition of p(x), and we will choose
it so that f(a) − p(a) = 0. Now, to relate f(x) − p(x) and f ′(x) − p′(x), we can use the MVT.
Let x ∈ [a, b]. Then, since f(x)− p(x) is differentiable on [a, x] there is some c ∈ [a, x] such that:

f(x)− p(x)− (f(a)− p(a))
x− a

= f ′(c)− p′(c)

|f(x)− p(x)| = |f ′(c)− p′(c)||x− a|
≤ |f ′(c)− p′(c)||b− a|

< |b− a| ε

|b− a|
= ε

Thus, we have:
|f(x)− p(x)| < ε and |f ′(x)− p′(x)| < ε
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Problem (7.2.2). Let f(x) = 1
x

on [1, 4] and let P = {1, 3
2 , 2, 4}. For (a), we have:

U(f, P ) = (3
2 − 1) + 2

3(2− 3
2) + 1

2(4− 2) = 1
2 + 1

3 + 1 = 11
6

L(f, P ) = 2
3(3

2 − 1) + 1
2(2− 3

2) + 1
4(4− 2) = 1

3 + 1
4 + 1

2 = 13
12

U(f, P )− L(f, P ) = 11
6 −

13
12 = 3

4

For (b), if we add the point 3 to the partition to P. Then, we have:

U(f, P ) = (3
2 − 1) + 2

3(2− 3
2) + 1

2(3− 2) + 1
3(3− 2)+ = 1

2 + 1
3 + 1

2 + 1
3 = 5

3
L(f, P ) = 2

3(3
2 − 1) + 1

2(2− 3
2) + 1

3(3− 2) + 1
4(4− 3) = 1

3 + 1
4 + 1

3 + 1
4 = 7

6
U(f, P )− L(f, P ) = 5

3 −
7
6 = 1

2

For (c), if we use the partition P ′ = {1, 3
2 , 2, 5

2 , 3, 7
2 , 4}, then we have:

U(f, P ) = 223
140

L(f, P ) = 341
280

U(f, P )− L(f, P ) = 3
8 < 2

5

Problem (7.2.3). For (a), let f be a bounded function. First, suppose that f integrable on [a, b].
Then, since f is integrable for each n there is a partition Pn such that:

U(f, Pn)− L(f, Pn) <
1
n

Thus, we can obtain a sequence of partitions (Pn) such that (U(f, Pn) − L(f, Pn)) → 0. On the
other hand if we have such sequence of partitions (Pn), then given ε > 0, there exists a natural
number N with |U(f, PN)−L(f, PN)| < ε. Thus, letting Pε = PN , we have the f is integrable by
the integrability criterion. Furthermore, for ε > 0 there exists an N such that for n ≥ N we have:

U(f, Pn)− U(f) < ε + L(f, Pn)− U(f) ≤ ε + L(f)− U(f) = ε

L(f)− L(f, Pn) < L(f)− U(f, Pn) + ε ≤ L(f)− U(f) + ε = ε

and hence
lim

n→∞
U(f, Pn) = U(f) and lim

n→∞
L(f, Pn) = L(f)

Thus, we have
∫ b

a f = limn→∞ U(f, Pn) = limn→∞ L(f, Pn).

For (b), since f(x) = x is increasing, on a given interval the supremum will be at the right endpoint
and the infimum will be at the left endpoint. Thus, we have:

U(x, Pn) =
n∑

k=1

1
n

k

n
= 1

n2

n∑
k=1

k = 1
n2

n(n + 1)
2 = n + 1

2n

L(x, Pn) =
n∑

k=1

1
n

k − 1
n

= 1
n2

n∑
k=1

(k − 1) = 1
n2

n−1∑
k=0

k = 1
n2

n(n− 1)
2 = n− 1

2n

For (c), we have:

lim
n→∞

U(x, Pn)− L(x, Pn) = lim
n→∞

n + 1
2n
− n− 1

2n
= lim

n→∞

1
n

= 0

Thus, f(x) = x is integrable on [0, 1] and we have:∫ 1

0
x = lim

n→∞

n + 1
2n

= lim
n→∞

1 + 1
n

2 = 1
2
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Problem (7.3.2). For (a), suppose P is an arbitrary partition of [0, 1]. Since the irrationals are
dense in R, every interval contains some irrational point and hence a point where Thomae’s function
t is zero and hence L(t, P ) = 0.

For (b), let ε > 0. Then, there is some N ∈ N such that 1
N+1 < ε

2 ≤
1
N

. Thus, the elements of D ε
2

are of the form p
q

where p ≤ N and, since p
q

< 1, p ≤ q. In particular, the possible elements can be
written out:

1
1
1
2

2
2

1
3

2
3

3
3... . . .

1
N

2
N

3
N
· · · N

N

This, list certainly has redundancies, but from it we can see that D ε
2

has at most 1+2+3+· · ·+N =
N(N+1)

2 elements. In particular, it is finite!

For (c), we can choose Pε so that there are very small subintervals around each of the finitely
many points in D ε

2
. Choose these subintervals to each contain one point of D ε

2
and have combined

length less than ε
2 . Their contribution to U(f, Pε) will be less than ε

2 since t(x) ≤ 1. Now, for the
remaining subintervals of Pε, we know that t(x) < ε

2 and since their combined length will be less
than 1, we have that U(t, Pε) < ε

2 + ε
2 = ε.

From (a) and (c), we have that U(t, Pε)− L(t, Pε) < ε so that by the integrability criterion t(x) is
integrable on [0, 1] and since L(t, P ) = 0 we see that

∫ 1
0 t = 0.

Problem (7.3.7). For (a), suppose that f : [a, b] → R is integrable and g satisfies g(x) = f(x)
for all but a finite number of points in [a, b]. If we can prove that g is integrable when it differs at
only a single point, then we can show it by induction for any finite number of points. Suppose that
g(x) 6= f(x) only at a single point c ∈ [a, b] and let M be such that 0 ≤ |g(c)− f(c)| < M , Now,
since f is integrable, for ε > 0, we can find a partition Pε such that:

U(f, Pε)− L(f, Pε) <
ε

2

Now, we can refine Pε by adding in points p1 and p2 such that p1, p2 ∈ (c− ε
4M

, c + ε
4M

) and there
are no points of Pε in between p1 and p2. (Note that one or both of p1 or p2 could already be in
Pε.) Call this new partition P ′ε and note that Pε ⊆ P ′ε. Moreover, this new subinterval has length
less than ε

2M
and the most it could change the increase the supremum or decrease the infimum is

M . In particular, we have:

U(g, P ′ε)− L(g, P ′ε) ≤ U(f, P ′ε)− L(f, P ′ε) + M
ε

2M
≤ U(f, Pε)− L(f, Pε) + ε

2 <
ε

2 + ε

2 = ε

where the second ≤ follows since P ′ε is a refinement of Pε. Thus, g is integrable by the integrability
criterion.

For (b), Dirichlet’s function differs from the zero function at the countably many points Q ∩ [0, 1],
but is not integrable.

Problem (7.4.2). For (a), note that g(x) = −g(−x) and hence
∫ a

0 g = −
∫ 0
−a g. Thus, we have:

(i)
∫−1

0 g +
∫ 1

0 g = −
∫ 0
−1 g +

∫ 1
0 g =

∫ 1
0 g +

∫ 1
0 g = 2

∫ 1
0 g > 0

(ii)
∫ 0

1 g +
∫ 1

0 g = −
∫ 1

0 g +
∫ 1

0 g = 0
(iii)

∫−2
1 g +

∫ 1
0 g = −

∫ 1
−2 g +

∫ 1
0 g = −

∫ 0
−2 g −

∫ 1
0 g +

∫ 1
0 g = −

∫ 0
−2 g =

∫ 2
0 g > 0
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For (b), since f is integrable on [b, c] and a ∈ [b, c], we have:

−
∫ b

c
f =

∫ c

b
f =

∫ a

b
f +

∫ c

a
= −

∫ b

a
f +

∫ c

a

Thus, adding the integrals with negative signs to both sides, we have:∫ b

a
f =

∫ c

a
+

∫ b

c
f

Problem (7.4.6). For (a), suppose that f(x) ≤M on [a, b]. Then, we have:

|(f(x))2−(f(y))2| = |f(x)+f(y)||f(x)−f(y)| ≤ (|f(x)|+|f(y)|)|f(x)−f(y)| ≤ 2M |f(x)−f(y)|

For (b), since f is integrable for ε > 0 there is a partition Pε such that:

U(f, Pε)− L(f, Pε) <
ε

2M

Then, we have:

U(f 2, Pε)− L(f 2, Pε) = |U(f 2, Pε)− L(f 2, Pε)|

=
n∑

k=1
|f 2(zk)− f 2(yk)|∆xk

≤
n∑

k=1
2M |f(zk)− f(yk)|∆xk

= 2M
n∑

k=1
|f(zk)− f(yk)|∆xk

= |U(f, Pε)− L(f, Pε)|

< 2M
ε

2M
= ε

where zk and yk are the points in [xk−1, xk] where f attains its minimum and maximum. Note that
we need the absolute value signs because we do not know the signs of f(zk) and f(yk) and it could
be the case that f(yk) is the supremum f and f(zk) is the infimum f .

For (c), suppose that f and g are integrable. Then f + g is integrable, and by (b) we have that f 2,
g2 and (f + g)2 are integrable. Thus, we have that

fg = 1
2((f + g)2 − f 2 − g2))

is integrable.
Problem (7.5.6). For (a), since h(x) and k(x) are differentiable, we have:

(h · k)′(x) = h(x)k′(x) + h′(x)k(x)

Since h′(x) and k′(x) are continuous the above function is integrable, and hence by the fundamental
theorem of calculus, we have:

h(b)k(b)−h(a)k(a) = (h ·k)(b)− (h ·k)(a) =
∫ b

a
(h ·k)′(x)dx =

∫ b

a
h(x)k′(x)dx+

∫ b

a
h′(x)k(x)dx

Thus, subtracting the final integral from both sides, we have:∫ b

a
h(x)k′(x)dx = h(b)k(b)− h(a)k(a)−

∫ b

a
h′(x)k(x)dx

For (b), we only need that the derivatives are integrable, because then we can use exercise 7.4.6 to
show that the products h(x)k′(x) and h′(x)k(x) and hence (h · k)′(x) are integrable.
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