Homework Solutions #5
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Problem (6.7.4). First of all, we have:

fe) = =501 -2)%
fa) = (1~ )7
f9) =~ - )
1-3-5--(2n —3) 2t

Thus, ag = f(0) = 1, and we have:

fm 1-3-5---(2n —3) 1-3-5---(2n —3)
an: = — = —

n! n 2-4-6---2n

Problem (6.7.11). Assume that f has continuous derivative on [a,b]. Then, by the Weierstrass
approximation theorem, given ¢ > 0 there exists some polynomial ¢(x) such that |f'(z) — q(z)| <
|bfa|} < ¢ for all z € [a,b]. Now, since ¢(z) is a polynomial, we have:

q(z) = ag + a1x + agx® + - - - + a, "

We would like to let p(x) be an antiderivative of ¢(z), so that ¢(x) = p’(z). Now, we have not
formally defined antiderivatives at this point, but we know what it should be for polynomials. Define

p(z) as follows:
33'2 l.n—i—l
p(z) :C+aoa:+a1§~l—---ann+1

Then, p'(x) = q(z). Note that we have free choice of C'in our definition of p(z), and we will choose
it so that f(a) — p(a) = 0. Now, to relate f(z) — p(z) and f'(x) — p'(z), we can use the MVT.
Let « € [a,b]. Then, since f(x) — p(x) is differentiable on [a, x| there is some ¢ € [a, 2] such that:

|f(z) = p(2)| = |f(c) = P'(c)]|z — al
< |f'(e) =P (Olb —a

<l E =

al

Thus, we have:

[f(x) —p(x)| <& and [f(z) —p'(z)| <e



Problem (7.2.2). Let f(z) =1 on [1,4] and let P = {1,3,2,4}. For (a), we have:
UFP) =(5-1D)+32-3)+54-2) =5+5+1=7¢
L(f,P)=3G-D+32-D+i@-2)=3+1+3=1

U(f,P)—L(f,P) %_% %

UfP)=(G-D+32-3)+35@-2)+36-2)+=5+5+5+5=3
Lf,P)=2C-1D+i2-H+LiB3-2)+i4-3)=3+1+14+1=1
(f,P)=L(f,P)=5—§=3
For (c), if we use the partition P’ = {1, 3, %, g 4}, then we have:
U(f.P) =13

L(f,P) = 35
U(f,P) = L(f.P) =<}

Problem (7.2.3). For (a), let f be a bounded function. First, suppose that f integrable on [a, b].
Then, since f is integrable for each n there is a partition P, such that:

U(f>Pn)_L(f7Pn)<7

Thus, we can obtain a sequence of partitions (P,) such that (U(f, P,) — L(f, P,)) — 0. On the
other hand if we have such sequence of partitions (P, ), then given ¢ > 0, there exists a natural
number N with |U(f, Px) — L(f, Py)| < €. Thus, letting P. = Py, we have the f is integrable by
the integrability criterion. Furthermore, for £ > 0 there exists an /N such that for n > N we have:

U(f, Ba) —U(f) <e+ L(f, P) —U(f) <e + L(f) —U(f) = ¢
L(f) = L(f, P) < L(f) = U(f, Fa) + e S L(f) = U(f) +e =¢

and hence

lim U(f,P,) =U(f) and  lim L(f, F,) = L(f)
Thus, we have [” f = lim, o0 U(f, P,) = limy, 00 L(f, P,).

For (b), since f(x) = x is increasing, on a given interval the supremum will be at the right endpoint
and the infimum will be at the left endpoint. Thus, we have:

zn:lﬁ iz”:k_in(njtl)_nj%
n?ig on? 2 D
L(z, P, = k’_* -
@P)=3 = - = 8 T
For (c), we have:
.on+1 n-—1 1
Jim Uz, P) = Lz, Py) = lim = —= = = — = lim ~ =0

Thus, f(x) = z is integrable on [0, 1] and we have:

z = lim = lim =
n—oo  92n n—oo 9

/1 o on+1 R |
0



Problem (7.3.2). For (a), suppose P is an arbitrary partition of [0,1]. Since the irrationals are
dense in R, every interval contains some irrational point and hence a point where Thomae's function
t is zero and hence L(t, P) = 0.

For (b), let € > 0. Then, there is some N € N such that 15 < § < 5. Thus, the elements of D
are of the form § where p < N and, since § < 1, p < q. In particular, the possible elements can be
written out:

1

1

1z

2 2

1 2 3

3 3 3
1 2 3 N
N N N N

This, list certainly has redundancies, but from it we can see that D% has at most 1+2+4+3+---+N =
N(N+1)

5 elements. In particular, it is finite!

For (c), we can choose P. so that there are very small subintervals around each of the finitely
many points in D=. Choose these subintervals to each contain one point of D: and have combined
length less than 5. Their contribution to U(f, P.) will be less than  since #(x) < 1. Now, for the
remaining subintervals of P., we know that ¢(z) < £ and since their combined length will be less

2
than 1, we have that U(t, F.) < § + § = <.

From (a) and (c), we have that U(t, P.) — L(t, P.) < € so that by the integrability criterion ¢(z) is
integrable on [0, 1] and since L(t, P) = 0 we see that [ ¢ = 0.

Problem (7.3.7). For (a), suppose that f : [a,b] — R is integrable and ¢ satisfies g(z) = f(x)
for all but a finite number of points in [a, b]. If we can prove that g is integrable when it differs at
only a single point, then we can show it by induction for any finite number of points. Suppose that
g(x) # f(z) only at a single point ¢ € [a,b] and let M be such that 0 < |g(c) — f(c)| < M, Now,
since f is integrable, for € > 0, we can find a partition P. such that:

U(f,PE)—L(f,P€)<

DO ™

Now, we can refine P. by adding in points p; and p; such that pi,p; € (c — 557, ¢+ 357) and there
are no points of P. in between p; and p,. (Note that one or both of p; or ps could already be in
P..) Call this new partition P. and note that P. C P!. Moreover, this new subinterval has length

less than 557 and the most it could change the increase the supremum or decrease the infimum is

M. In particular, we have:

/ / / / € € 5 €
U(g, Pl) = L(g, 1) SU(f, ) = L(f, Pl) + M SU(f, P) = L(f, P) + 5 < 5+ 5 =€

where the second < follows since P! is a refinement of P.. Thus, g is integrable by the integrability
criterion.

For (b), Dirichlet’s function differs from the zero function at the countably many points Q N [0, 1],
but is not integrable.

Problem (7.4.2). For (a), note that g(z) = —g(—x) and hence [¢g = — [°, g. Thus, we have:
) Jo'g+thhg=—1g+hha=lg+lhg=20g>0
(i) 9+ lg=—lg+lg=0
(i) P9+ log=—ta9+fog=—1g9—fhg+lho=—/9=J9>0

3



For (b), since f is integrable on [b, | and a € [b, ¢], we have:

b c a c b c
AR EE SAY ALY REY/
c b b a a a
Thus, adding the integrals with negative signs to both sides, we have:
b c b
[i-[+]7
Problem (7.4.6). For (a), suppose that f(z) < M on [a,b]. Then, we have:

(f (@) =(F@)*] = [f@)+ fFWILf (@)= F @) < (F@I+F @D f (@)~ fy)] < 2M|f(2)~f(y)]

For (b), since f is integrable for ¢ > 0 there is a partition P. such that:

U(fape)_L(f7P€)<ﬁ

Then, we have:
U(f27P€) - L(f27p€) = |U<f27P€> - L(f27P€)|

= 317 - (A
< 3 2MIf(a1) — Sl Ay

Y Z ) — Fl Az

= |U(faP8)_L(f7PE>|

5
< 2M2M =
where z;, and y; are the points in [z)_1, x;] where f attains its minimum and maximum. Note that
we need the absolute value signs because we do not know the signs of f(z;) and f(yx) and it could
be the case that f(yx) is the supremum f and f(z) is the infimum f.

3

For (c), suppose that f and g are integrable. Then f + g is integrable, and by (b) we have that f2,
g% and (f + g)? are integrable. Thus, we have that
fg=5((f +0V ~ "~ %)
is integrable.
Problem (7.5.6). For (a), since h(x) and k(z) are differentiable, we have:
(h- k) (x) = h(z)k'(z) + W (2)k(x)

Since 1/(x) and k’(x) are continuous the above function is integrable, and hence by the fundamental
theorem of calculus, we have:

b b b
h(b)k(b) — h(a)k(a) = (h-E)(b) — (h-k)(a) = / (h-k) (2)dz = / h(x)k’($)d$—|—/ W (2)k(z)dz

Thus, subtracting the final integral from both sides, we have:

/a " W) (2)dx = h(B)k(b) — h(a)k(a) — / "W (@)k(2)da

a

For (b), we only need that the derivatives are integrable, because then we can use exercise 7.4.6 to
show that the products h(x)k'(x) and h/(z)k(z) and hence (h - k)'(z) are integrable.



