Homework Solutions #5

CAS MA 511

Problem (6.7.4)**.** First of all, we have:

$$
f(x) = (1 - x)^{\frac{1}{2}}
$$

\n
$$
f'(x) = -\frac{1}{2}(1 - x)^{\frac{-1}{2}}
$$

\n
$$
f''(x) = -\frac{1}{2^2}(1 - x)^{\frac{-3}{2}}
$$

\n
$$
f^{(3)}(x) = -\frac{1 \cdot 3}{2^3}(1 - x)^{\frac{-5}{2}}
$$

\n
$$
\vdots
$$

\n
$$
f^{(n)}(x) = -\frac{1 \cdot 3 \cdot 5 \cdots (2n - 3)}{2^n}(1 - x)^{\frac{2n - 1}{2}}
$$

Thus, $a_0 = f(0) = 1$, and we have:

$$
a_n = \frac{f^{(n)}}{n!} = -\frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n} = -\frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{2 \cdot 4 \cdot 6 \cdots 2n}
$$

Problem (6.7.11)**.** Assume that *f* has continuous derivative on [*a, b*]. Then, by the Weierstrass approximation theorem, given $\varepsilon > 0$ there exists some polynomial $q(x)$ such that $|f'(x) - q(x)| <$ $\min\{\varepsilon,\frac{\varepsilon}{|b-a|}\}\leq\varepsilon$ for all $x\in[a,b].$ Now, since $q(x)$ is a polynomial, we have:

$$
q(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n
$$

We would like to let $p(x)$ be an antiderivative of $q(x)$, so that $q(x) = p'(x)$. Now, we have not formally defined antiderivatives at this point, but we know what it should be for polynomials. Define $p(x)$ as follows:

$$
p(x) = C + a_0 x + a_1 \frac{x^2}{2} + \dots + a_n \frac{x^{n+1}}{n+1}
$$

Then, $p'(x) = q(x)$. Note that we have free choice of C in our definition of $p(x)$, and we will choose it so that $f(a) - p(a) = 0$. Now, to relate $f(x) - p(x)$ and $f'(x) - p'(x)$, we can use the MVT. Let $x \in [a, b]$. Then, since $f(x) - p(x)$ is differentiable on $[a, x]$ there is some $c \in [a, x]$ such that:

$$
\frac{f(x) - p(x) - (f(a) - p(a))}{x - a} = f'(c) - p'(c)
$$

\n
$$
|f(x) - p(x)| = |f'(c) - p'(c)||x - a|
$$

\n
$$
\leq |f'(c) - p'(c)||b - a|
$$

\n
$$
< |b - a| \frac{\varepsilon}{|b - a|} = \varepsilon
$$

Thus, we have:

$$
|f(x)-p(x)| < \varepsilon \quad \text{and} \quad |f'(x)-p'(x)| < \varepsilon
$$

Problem (7.2.2). Let $f(x) = \frac{1}{x}$ on $[1, 4]$ and let $P = \{1, \frac{3}{2}\}$ $\frac{3}{2}$, 2, 4}. For (a), we have:

$$
U(f, P) = \left(\frac{3}{2} - 1\right) + \frac{2}{3}\left(2 - \frac{3}{2}\right) + \frac{1}{2}\left(4 - 2\right) = \frac{1}{2} + \frac{1}{3} + 1 = \frac{11}{6}
$$

\n
$$
L(f, P) = \frac{2}{3}\left(\frac{3}{2} - 1\right) + \frac{1}{2}\left(2 - \frac{3}{2}\right) + \frac{1}{4}\left(4 - 2\right) = \frac{1}{3} + \frac{1}{4} + \frac{1}{2} = \frac{13}{12}
$$

\n
$$
U(f, P) - L(f, P) = \frac{11}{6} - \frac{13}{12} = \frac{3}{4}
$$

For (b), if we add the point 3 to the partition to P. Then, we have:

$$
U(f, P) = \left(\frac{3}{2} - 1\right) + \frac{2}{3}\left(2 - \frac{3}{2}\right) + \frac{1}{2}\left(3 - 2\right) + \frac{1}{3}\left(3 - 2\right) + \frac{1}{2} + \frac{1}{3} + \frac{1}{2} + \frac{1}{3} = \frac{5}{3}
$$
\n
$$
L(f, P) = \frac{2}{3}\left(\frac{3}{2} - 1\right) + \frac{1}{2}\left(2 - \frac{3}{2}\right) + \frac{1}{3}\left(3 - 2\right) + \frac{1}{4}\left(4 - 3\right) = \frac{1}{3} + \frac{1}{4} + \frac{1}{3} + \frac{1}{4} = \frac{7}{6}
$$
\n
$$
U(f, P) - L(f, P) = \frac{5}{3} - \frac{7}{6} = \frac{1}{2}
$$

For (c), if we use the partition $P' = \{1, \frac{3}{2}\}$ $\frac{3}{2}$, 2, $\frac{5}{2}$ $\frac{5}{2}$, 3, $\frac{7}{2}$ $\{\frac{7}{2}, 4\}$, then we have:

$$
U(f, P) = \frac{223}{140}
$$

\n
$$
L(f, P) = \frac{341}{280}
$$

\n
$$
U(f, P) - L(f, P) = \frac{3}{8} < \frac{2}{5}
$$

Problem (7.2.3)**.** For (a), let *f* be a bounded function. First, suppose that *f* integrable on [*a, b*]. Then, since f is integrable for each n there is a partition P_n such that:

$$
U(f, P_n) - L(f, P_n) < \frac{1}{n}
$$

Thus, we can obtain a sequence of partitions (P_n) such that $(U(f, P_n) - L(f, P_n)) \to 0$. On the other hand if we have such sequence of partitions (P_n) , then given $\varepsilon > 0$, there exists a natural number *N* with $|U(f, P_N) - L(f, P_N)| < \varepsilon$. Thus, letting $P_{\varepsilon} = P_N$, we have the *f* is integrable by the integrability criterion. Furthermore, for $\varepsilon > 0$ there exists an *N* such that for $n \ge N$ we have:

$$
U(f, P_n) - U(f) < \varepsilon + L(f, P_n) - U(f) \leq \varepsilon + L(f) - U(f) = \varepsilon
$$
\n
$$
L(f) - L(f, P_n) < L(f) - U(f, P_n) + \varepsilon \leq L(f) - U(f) + \varepsilon = \varepsilon
$$

and hence

$$
\lim_{n \to \infty} U(f, P_n) = U(f) \quad \text{and} \quad \lim_{n \to \infty} L(f, P_n) = L(f)
$$

Thus, we have $\int_a^b f = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} L(f, P_n)$.

For (b), since $f(x) = x$ is increasing, on a given interval the supremum will be at the right endpoint and the infimum will be at the left endpoint. Thus, we have:

$$
U(x, P_n) = \sum_{k=1}^{n} \frac{1}{n} \frac{k}{n} = \frac{1}{n^2} \sum_{k=1}^{n} k = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{n+1}{2n}
$$

$$
L(x, P_n) = \sum_{k=1}^{n} \frac{1}{n} \frac{k-1}{n} = \frac{1}{n^2} \sum_{k=1}^{n} (k-1) = \frac{1}{n^2} \sum_{k=0}^{n-1} k = \frac{1}{n^2} \frac{n(n-1)}{2} = \frac{n-1}{2n}
$$

For (c), we have:

$$
\lim_{n \to \infty} U(x, P_n) - L(x, P_n) = \lim_{n \to \infty} \frac{n+1}{2n} - \frac{n-1}{2n} = \lim_{n \to \infty} \frac{1}{n} = 0
$$

Thus, $f(x) = x$ is integrable on [0, 1] and we have:

$$
\int_0^1 x = \lim_{n \to \infty} \frac{n+1}{2n} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2} = \frac{1}{2}
$$

Problem (7.3.2). For (a), suppose P is an arbitrary partition of [0, 1]. Since the irrationals are dense in R, every interval contains some irrational point and hence a point where Thomae's function *t* is zero and hence $L(t, P) = 0$.

For (b), let $\varepsilon > 0$. Then, there is some $N \in \mathbb{N}$ such that $\frac{1}{N+1} < \frac{\varepsilon}{2} \leq \frac{1}{N}$ For (b), let $\varepsilon > 0$. Then, there is some $N \in \mathbb{N}$ such that $\frac{1}{N+1} < \frac{\varepsilon}{2} \leq \frac{1}{N}$. Thus, the elements of $D_{\frac{\varepsilon}{2}}$ are of the form $\frac{p}{q}$ where $p \leq N$ and, since $\frac{p}{q} < 1$, $p \leq q$. In particular written out:

This, list certainly has redundancies, but from it we can see that $D_{\frac{\varepsilon}{2}}$ has at most $1{+}2{+}3{+}{\cdots}{+}N=$ *N*(*N*+1) $\frac{N+1}{2}$ elements. In particular, it is finite!

For (c) , we can choose P_{ε} so that there are very small subintervals around each of the finitely many points in *D^ε* . Choose these subintervals to each contain one point of *D^ε* and have combined length less than $\frac{\varepsilon^2}{2}$. Their contribution to $U(f,P_\varepsilon)$ will be less than $\frac{\varepsilon}{2}$ since $t(x)\leq 1$. Now, for the remaining subintervals of P_{ε} , we know that $t(x) < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ and since their combined length will be less than 1, we have that $U(t, P_{\varepsilon}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

From (a) and (c), we have that $U(t, P_{\varepsilon}) - L(t, P_{\varepsilon}) < \varepsilon$ so that by the integrability criterion $t(x)$ is integrable on $[0,1]$ and since $L(t,P)=0$ we see that $\int_0^1 t = 0.$

Problem (7.3.7). For (a), suppose that $f : [a, b] \to \mathbb{R}$ is integrable and *g* satisfies $g(x) = f(x)$ for all but a finite number of points in $[a, b]$. If we can prove that q is integrable when it differs at only a single point, then we can show it by induction for any finite number of points. Suppose that *g*(*x*) \neq *f*(*x*) only at a single point *c* ∈ [*a*, *b*] and let *M* be such that $0 \leq |g(c) - f(c)|$ < *M*, Now, since *f* is integrable, for $\varepsilon > 0$, we can find a partition P_{ε} such that:

$$
U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \frac{\varepsilon}{2}
$$

Now, we can refine P_ε by adding in points p_1 and p_2 such that $p_1, p_2 \in (c - \frac{\varepsilon}{4N})$ $\frac{\varepsilon}{4M}$, $c + \frac{\varepsilon}{4M}$ $\frac{\varepsilon}{4M}$) and there are no points of P_{ε} in between p_1 and p_2 . (Note that one or both of p_1 or p_2 could already be in P_ε .) Call this new partition P'_ε and note that $P_\varepsilon\subseteq P'_\varepsilon.$ Moreover, this new subinterval has length less than $\frac{\varepsilon}{2M}$ and the most it could change the increase the supremum or decrease the infimum is *M*. In particular, we have:

$$
U(g,P'_\varepsilon)-L(g,P'_\varepsilon)\leq U(f,P'_\varepsilon)-L(f,P'_\varepsilon)+M\frac{\varepsilon}{2M}\leq U(f,P_\varepsilon)-L(f,P_\varepsilon)+\frac{\varepsilon}{2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

where the second \leq follows since P'_ε is a refinement of $P_\varepsilon.$ Thus, g is integrable by the integrability criterion.

For (b), Dirichlet's function differs from the zero function at the countably many points $\mathbb{Q} \cap [0,1]$, but is not integrable.

Problem (7.4.2). For (a), note that $g(x) = -g(-x)$ and hence $\int_0^a g = -\int_{-a}^0 g$. Thus, we have:

(i) $\int_0^{-1} g + \int_0^1 g = -\int_{-1}^0 g + \int_0^1 g = \int_0^1 g + \int_0^1 g = 2 \int_0^1 g > 0$ (ii) $\int_1^0 g + \int_0^1 g = - \int_0^1 g + \int_0^1 g = 0$ (iii) $\int_{1}^{-2} g + \int_{0}^{1} g = -\int_{-2}^{1} g + \int_{0}^{1} g = -\int_{-2}^{0} g - \int_{0}^{1} g + \int_{0}^{1} g = -\int_{-2}^{0} g = \int_{0}^{2} g > 0$ For (b), since f is integrable on $[b, c]$ and $a \in [b, c]$, we have:

$$
-\int_{c}^{b} f = \int_{b}^{c} f = \int_{b}^{a} f + \int_{a}^{c} = -\int_{a}^{b} f + \int_{a}^{c}
$$

Thus, adding the integrals with negative signs to both sides, we have:

$$
\int_a^b f = \int_a^c + \int_c^b f
$$

Problem (7.4.6). For (a), suppose that $f(x) \leq M$ on [a, b]. Then, we have: $|(f(x))^{2} - (f(y))^{2}| = |f(x) + f(y)||f(x) - f(y)| \le (|f(x)| + |f(y)|)|f(x) - f(y)| \le 2M|f(x) - f(y)|$ For (b), since *f* is integrable for $\varepsilon > 0$ there is a partition P_{ε} such that:

$$
U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \frac{\varepsilon}{2M}
$$

Then, we have:

$$
U(f^2, P_{\varepsilon}) - L(f^2, P_{\varepsilon}) = |U(f^2, P_{\varepsilon}) - L(f^2, P_{\varepsilon})|
$$

$$
= \sum_{k=1}^n |f^2(z_k) - f^2(y_k)| \Delta x_k
$$

$$
\leq \sum_{k=1}^n 2M|f(z_k) - f(y_k)| \Delta x_k
$$

$$
= 2M \sum_{k=1}^n |f(z_k) - f(y_k)| \Delta x_k
$$

$$
= |U(f, P_{\varepsilon}) - L(f, P_{\varepsilon})|
$$

$$
< 2M \frac{\varepsilon}{2M} = \varepsilon
$$

where z_k and y_k are the points in $[x_{k-1}, x_k]$ where f attains its minimum and maximum. Note that we need the absolute value signs because we do not know the signs of $f(z_k)$ and $f(y_k)$ and it could be the case that $f(y_k)$ is the supremum f and $f(z_k)$ is the infimum f .

For (c), suppose that f and g are integrable. Then $f+g$ is integrable, and by (b) we have that f^2 , g^2 and $(f+g)^2$ are integrable. Thus, we have that

$$
fg = \frac{1}{2}((f+g)^2 - f^2 - g^2))
$$

is integrable.

Problem (7.5.6). For (a), since $h(x)$ and $k(x)$ are differentiable, we have:

$$
(h \cdot k)'(x) = h(x)k'(x) + h'(x)k(x)
$$

Since $h^\prime(x)$ and $k^\prime(x)$ are continuous the above function is integrable, and hence by the fundamental theorem of calculus, we have:

$$
h(b)k(b) - h(a)k(a) = (h \cdot k)(b) - (h \cdot k)(a) = \int_a^b (h \cdot k)'(x)dx = \int_a^b h(x)k'(x)dx + \int_a^b h'(x)k(x)dx
$$

Thus, subtracting the final integral from both sides, we have:

$$
\int_{a}^{b} h(x)k'(x)dx = h(b)k(b) - h(a)k(a) - \int_{a}^{b} h'(x)k(x)dx
$$

For (b), we only need that the derivatives are integrable, because then we can use exercise 7.4.6 to show that the products $h(x)k'(x)$ and $h'(x)k(x)$ and hence $(h \cdot k)'(x)$ are integrable.