Lecture #1

MA 511, Introduction to Analysis

May 24, 2021

MA 511, Introduction to Analysis \blacksquare [Lecture](#page-6-0) #1 \blacksquare 1 / 7

The Irrationality of $\sqrt{2}$

G.H. Hardy argues that mathematics "must be justified as art if it is to be justified at all."

Theorem

There is no rational number whose square is 2.

What does this tell us about our conception of numbers?

$$
N = \{1, 2, 3, \dots\}
$$

\n
$$
\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, 3, \dots\}
$$

\n
$$
\mathbb{Q} = \{\text{all fractions } \frac{p}{q} \text{ where } p \text{ and } q \text{ are integers with } q \neq 0\}
$$

\n
$$
\mathbb{R} = ???
$$

How well can we approximate $\sqrt{2}$ with a rational number? How many "numbers" is Q "missing?"

■ To write proofs and develop the theory of analysis, we need some agreed upon terminology and notation!

Definition

Intuitively, a **set** is any collection of objects, which are called the **elements** of the set. We write $x \in A$ if x is an element of A. Given two sets A and B, the **union** $A \cup B$ is defined by:

 $x \in A \cup B$ if $x \in A$ or $x \in B$ or both

The **intersection** $A \cap B$ is defined by:

 $x \in A \cap B$ if $x \in A$ and $x \in B$

Example: Natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$, "set builder notation" $D = \{x \in \mathbb{N} : x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, empty set \emptyset .

Sets (cont.)

 \blacksquare How can we relate sets to each other?

Definition

A is a **subset** of B, or B contains A, written $A \subseteq B$, or $B \supseteq A$, if every element of A is an element of B. This is called the **inclusion** relationship, and we have:

$$
A = B
$$
 if and only if $A \subseteq B$ and $B \subseteq A$

Most of the sets we will consider will be subsets of the real numbers \mathbb{R} . For $A \subseteq \mathbb{R}$ the **complement** of A, written A^c , is defined by:

$$
A^c = \{x \in \mathbb{R} : x \notin A\}
$$

Example: De Morgan's Laws:

$$
(A \cap B)^c = A^c \cup B^c \text{ and } (A \cup B)^c = A^c \cap B^c
$$

Definition

Given two sets A and B a **function** f from A to B is a rule or mapping that takes each element $x \in A$ and associates it with a single element $f(x)$ of B. In this case, we write $f : A \rightarrow B$ and call A the **domain** of f. The **range** of f is not necessarily all of B, but refers to the subset:

$$
\{y \in B : f(x) = y \text{ for some } x \in A\}
$$

Example: $f(x) = x^2 + x + 1$, Dirichlet function, absolute value.

Proposition

The absolute value function satisfies:

$$
|ab|=|a||b|
$$

and the **triangle inequality**:

$$
|a+b|\leq |a|+|b|
$$

Direct proof ($P \Rightarrow Q$): assume the hypothesis and proceed by rigorously logical deductions to demonstrate the conclusion.

- Example: Proof of De Morgan's Laws
- **Proof by contradiction (**P **and not** Q ⇒ **contradiction):** assume the hypothesis, negate the conclusion and proceed by rigorously logical deductions until a contradiction arises.
	- Example: Proof of the irrationality of $\sqrt{2}$
- **Contrapositive proof (not** $Q \Rightarrow$ **not** P): negate the conclusion and proceed by rigorously logical deductions to demonstrate the negation of the hypothesis.

Induction

Proof by induction: For a proposition $P(n)$, depending on a natural number n, show that $P(1)$ holds and that if $P(n)$ holds, then $P(n + 1)$ holds. By the following proposition, this implies that $P(n)$ holds for all $n \in \mathbb{N}$.

Proposition

If $S \subseteq \mathbb{N}$ with the property that:

 \blacksquare 1 \in S

$$
if n \in S, then n+1 \in S.
$$

then $S = N$.

(We may sometimes replace $\mathbb N$ with $\mathbb N \cup \{0\}$ and $1 \in S$ with $0 \in S$.)

Example: Proof that:

$$
1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}
$$