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L’Hopital’s Rule

Theorem
Let f , g be continuous on an interval containing a, and differentiable at all
other points. If f (a), g(a) = 0 or limx→a g(x) =∞, and g ′(x) 6= 0 for
x 6= a, then limx→a

f ′(x)
g ′(x) = L =⇒ limx→a

f (x)
g(x) = L

The other versions of L’Hopital’s Rule we see in calculus can all be
handled by algebraic limit theorems and the cases we have proven
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Non-Differentiability

We saw at the beginning of the chapter that differentiable implies
continuous. We also saw that continuous does not imply differentiable
Consider the following questions:

1 Does continuous everywhere imply differentiable somewhere?
2 Is an arbitrary combination of differentiable functions have to be

differentiable?
3 How special is the property of differentiability? How weird can

(continuous) functions be?
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Nerdy Math Meme
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The Weierstrass Function

Definition
For the remained of this section, let h : R→ R be defined by h(x) = |x |
for −1 ≤ x ≤ 1 and the property that h(x + 2) = h(x) for all x ∈ R

Note: h is continuous and differentiable everywhere except for x ∈ Z.
Also, 0 ≤ h ≤ 1

Definition
For all n ∈ N, define hn(x) = 1

2n h(2nx)

Definition
Define g : R→ R by g(x) =

∑∞
n=1 hn(x)
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The Weierstrass Function (Continued)

An approximation of g on the interval [0, 2]
Because h(x + 2) = h(x), g(x + 2) = g(x). The behavior of g
everywhere is described by the behavior on [0, 2]

MA 511, Introduction to Analysis Lecture #14 6 / 10



The Weierstrass Function (Continued)

Theorem
For all n ∈ N, hn is continuous everywhere, is differentiable everywhere
except for x = Z

2n , and satisfies h′
n(x) = h′(2nx) where it is differentiable

Theorem
g is continuous everywhere on R but g is not differentiable anywhere on R

Theorem
Let 0 < a < 1 and b be such that ab ≥ 1. Define the function f : R→ R
by f (x) =

∑∞
n=0 an cos(bnx). f is continuous everywhere on R but is not

differentiable anywhere on R

What properties of sequences/series of functions are preserved in the
limit?
Can we represent complicated functions as limits of simpler functions
are use that as a tool for analysis?
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Function Sequences

Just as we can define sequences of Reals, we can define sequences of
Real valued functions
Ideally, we would like to recover as many properties of sequences as
possible for the case of sequences of functions
In this chapter, we will develop as many of these results as we can
and use them to explore the behavior of more exotic functions

Definition (Pointwise Convergence of Functions)
For each n ∈ N, let fn : A→ R be a function. We say that the sequence
(fn) converges pointwise on A to f if, for all x ∈ A, the sequence (fn(x))
converges to f (x)
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Continuity of the Limit Function
It is NOT true that sequences of continuous functions converge to
continuous functions
If we attempt to prove such a ”theorem”, we may find the type of
poor behavior which causes it to fail

Definition (Uniform Convergence of Functions)
For each n ∈ N, let fn : A→ R be a function. We say that the sequence
(fn) converges uniformly on A to f if for all ε > 0, there exists N ∈ N such
that |fn(x)− f (x)| < ε for all n ≥ N and x ∈ A

Definition (Alternate Form of Pointwise Convergence)
For each n ∈ N, let fn : A→ R be a function. We say that the sequence
(fn) converges pointwise on A to f if for all ε > 0 and for all x ∈ A, there
exists N ∈ N such that |fn(x)− f (x)| < ε for all n ≥ N

We could even consider N in the pointwise case as a function
N : A→ N
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Other Types of Convergence

Definition (Uniform Convergence on Compact Subsets)
For each n ∈ N, let fn : A→ R be a function. We say that the sequence
(fn) converges uniformly on compact subsets of A to f if for all K ⊆ A
that are compact and ε > 0, there exists N ∈ N such that
|fn(x)− f (x)| < ε for all n ≥ N and x ∈ K

This notion is more useful in complex analysis and functional analysis
than real analysis
We could define similar notions for pointwise convergence or for any
other set property

Theorem
For each n ∈ N, let fn : A→ R be a function. If (fn) converges to f
uniformly on A, then it converges to f uniformly on compact subsets of A.
If (fn) converges to f uniformly on compact subsets of A, then it
converges to f pointwise on A
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