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Continuity of Limiting Functions Revisited

Theorem (Cauchy Criterion for Sequences of Functions)
For each n ∈ N, let fn : A→ R be a function. (fn) converges uniformly to
f if and only if for every ε > 0 and x ∈ A there exists N ∈ N such that
|fn(x)− fm(x)| < ε for all n,m ≥ N

Theorem (Continuous Limit Theorem)
Let (fn) be a sequence of functions which converge uniformly to f on A. If
all fn are continuous, then f is continuous.

Since we basically defined uniform convergence of functions as having
the property that fixed the hole we discovered earlier, this result is
unsurprising
Uniform convergence of functions will be a necessary tool for many
theorems about the behavior of function sequences in the coming
chapter
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More Convergence Results

Theorem (Dini’s Theorem from 6.2.11)
Let fn → f pointwise on a compact set K and fn(x) be increasing for all
x ∈ K. If fn and f are continuous, then fn → f uniformly

Theorem (from 6.2.13)
Let A be a countable set A = {x1, x2, ...}, and (fn) be a bounded sequence
of functions on A. There is a subsequence (fnk ) which converges pointwise
to some function f on A.
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Even More Convergence Results

Definition (Equicontinuity from 6.2.14)
A sequence of functions (fn) is equicontinuous on A if for all ε > 0, there
exists δ > 0 such that for all x , y ∈ A and n ∈ N, |x − y | < δ implies that
|fn(x)− fn(y)| < ε

Theorem (Arzela-Ascoli Theorem from 6.2.15)
Let fn be bounded, and equicontinuous on [0, 1]. There exists a
subsequence of functions fnk which converges uniformly to some function f
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Differentiability of Limits

Theorem (Differentiable Limit Theorem)
Let fn → f pointwise on [a, b] and let fn be differentiable. If (f ′n) converges
uniformly on [a, b] to a function g, then f is differentiable and f ′ = g

Theorem
Let (fn) be a sequence of differentiable functions on [a, b] and (f ′n)
converge uniformly. If fn(x0) is convergent for some x0 ∈ [a, b], then (fn)
converges uniformly on [a, b]

Combining these, we only need to have that (f ′n) converges uniformly
and f (x0) converges for some x0 ∈ [a, b] to get both results
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Series of Functions

Definition (Convergence of Series of Functions)
For each n ∈ N, let fn and f be functions A→ R. We say that the series∑∞

n=1 fn converges pointwise to f if the sequence of partial sum functions

sm =
m∑

n=1
fn

converges pointwise to f . We define uniform convergence similarly.

Just as we did with sequences of functions, we will try to recover
similar results as those about series of real numbers
We will also need to restrict ourselves to uniform convergence to
make many of these properties work
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Term-by-Term Theorems

Theorem (Term-by-Term Continuity Theorem)
Let fn be continuous on A and

∑∞
n=1 fn converge uniformly to f on A. If

this is true, then f is continuous

Theorem (Term-by-Term Differentiability Theorem)
Let fn be differentiable on A and

∑∞
n=1 f ′n converge uniformly to g on A. If∑∞

n=1 fn converges at some x0 ∈ A, then
∑∞

n=1 fn converges uniformly to
some function f with f ′ = g
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Cauchy Criterion

Theorem (Cauchy Criterion for Uniform Convergence of Series)
A series

∑∞
n=1 fn converges uniformly on A if and only if for all ε > 0,

there exists N ∈ N such that ∣∣∣∣∣∣
t∑

n=s+1
fn

∣∣∣∣∣∣ < ε

for all t > s ≥ N and x ∈ A

Corollary (Weierstrass M-Test)
Let fn be a sequence of functions and Mn be a sequence of real numbers
such that |fn| ≤ Mn for all x ∈ A. If

∑∞
n=1 Mn converges, then

∑∞
n=1 fn

converges uniformly on A
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Power Series

Definition (Power Series)
Power series are expressions of the form

f (x) =
∞∑

n=1
anxn

defined on whatever domain the series converges.

It is possible for a function f (x) to be defined in a different way but
be representable as a power series
an can be 0 so polynomials are also power series
All power series converge at x = 0

Theorem
If
∑∞

n=1 anxn converges at x0 ∈ R, then it converges absolutely for all
|x | < |x0|
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Radius of Convergence

The previous theorem shows there are only a few types of domains for
power series: {0}, R, and symmetric intervals around 0

Definition (Radius of Convergence)
Let the power series

∑∞
n=1 anxn converge on some domain A. If

A = (−R,R), [−R,R), (−R,R], or [−R,R], we define the radius of
convergence to be R. If A = R, we define the radius of convergence to be
∞

Theorem
If
∑∞

n=1 anxn converges absolutely at x0 ∈ R, then it converges uniformly
on [−|x0|, |x0|]
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Abel’s Theorem

Lemma (Abel’s Lemma)
Let (bn) be a decreasing sequence of positive values and

∑∞
n=1 an be a

series such that there exists A > 0 satisfying

|
k∑

n=1
an| ≤ A

for all k ∈ N. It then follows that

|
k∑

n=1
anbn| ≤ Ab1

Theorem (Abel’s Theorem)
If a series

∑∞
n=1 anxn converges at R > 0, then it converges uniformly on

[0,R], A similar result holds for −R and [−R, 0]
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Properties of Power Series

Theorem
If
∑∞

n=1 anxn converges pointwise on A, it converges uniformly on compact
subsets of A

Theorem
If
∑∞

n=1 anxn converges on (−R,R), then
∑∞

n=1 nanxn−1 converges on
(−R,R) as well. The convergence is uniform on compact subsets of
(−R,R)

Theorem
Assume that f (x) =

∑∞
n=1 anxn converges on an interval A ⊆ R. f is

continuous on A and infinitely differentiable on all intervals (−R,R) ⊆ A.
The derivative of f is given by

f ′(x) =
∞∑

n=1
nanxn−1
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