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Properties of Power Series

Theorem
If
∑∞

n=1 anxn converges pointwise on A, it converges uniformly on compact
subsets of A

Theorem
If
∑∞

n=1 anxn converges on (−R,R), then
∑∞

n=1 nanxn−1 converges on
(−R,R) as well. The convergence is uniform on compact subsets of
(−R,R)

Theorem
Assume that f (x) =

∑∞
n=1 anxn converges on an interval A ⊆ R. f is

continuous on A and infinitely differentiable on all intervals (−R,R) ⊆ A.
The derivative of f is given by

f ′(x) =
∞∑

n=1
nanxn−1
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More Power Series Results

Theorem (Problem 6.5.7)

Let
∑∞

n=1 anxn be a power series such that an 6= 0 and lim sup
∣∣∣an+1

an

∣∣∣ = L.
The series converges on (− 1

L ,
1
L)

Theorem (Problem 6.5.8)∑∞
n=0 anxn =

∑∞
n=0 bnxn if and only if an = bn for all n ∈ N

Theorem (Taylor’s Formula for Coefficients)
If f is an infinitely differentiable function defined on (−R,R) and f can be
represented as a power series,

∑∞
n=1 anxn, then

an = f (n)(0)
n!

We still need to show that f can be represented this way
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Errors of Taylor Polynomials

Definition (Taylor Polynomial)
Let f be N-times differentiable. For 0 ≤ n ≤ N, we can define, the nth
Taylor Polynomial of f as

Sn =
n∑

k=0

f (k)(0)
k! xk

Theorem (Lagrange Remainder Theorem)
Let f be N + 1-times differentiable on (−R,R) and En(x) = f (x)− Sn(x).
For all x 6= 0 in (−R,R), there exists c such that |c| < |x | and

EN(x) = f N+1(c)
(N + 1)!xN+1

Note: Our choice of c does depend on x but for many (not all)
functions we can bound f (N+1)(c)

MA 511, Introduction to Analysis Lecture #16 4 / 9



Moving the Center

Definition (Taylor Polynomial at a)
Let f be N-times differentiable and a in the domain of f . For 0 ≤ n ≤ N,
we can define, the nth Taylor Polynomial of f centered at a as

Sn =
n∑

k=0

f (k)(a)
k! (x − a)k

We can define a similar shift for power series
All of our established rules apply simply by shifting the center of all of
our statements to a instead of 0
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Cauchy Remainder Theorem

Theorem (Cauchy Remainder Theorem (from 6.6.9))
Let f be N + 1-times differentiable on (−R,R), a ∈ (−R,R), and define
the following:

SN(x , a) =
N∑

n=0

f (n)(a)
n! (x − a)n

EN(x , a) = f (x)− SN(x , a)

For x ∈ (−R,R) and x 6= 0, we can find c ∈ (0, x) such that

EN(x) = f (N+1)(c)
N! (x − c)Nx
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The Limitations of Taylor Series

We have not actually shown that infinitely differentiable functions can
be represented as power series because they can’t

Theorem
The function f defined below is infinitely differentiable on R, but the
Taylor Series generated from f converges uniformly on all of R to the 0
function

f (x) =

e−
1

x2 if x 6= 0
0 if x = 0

It is easy to imagine a way to construct a function whose Taylor series
converges to the Taylor series of any given function
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A Different Perspective

Theorem
Let C∞(A) denote the space of all infinitely differentiable functions
f : A→ R for any A ⊆ R. Let RN denote the space of all possible
sequences of Real numbers. The map Ta : C∞(R)→ RN defined for any
a ∈ A by

Ta(f ) =
(

f (a)
a! ,

f ′(a)
1! ,

f ′′(a)
2! , ...,

f (n)(a)
n! , ...

)
is not injective
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Analytic Functions

Definition (Analytic Functions)
f ∈ C∞(A) is real analytic on A if, for all x0 ∈ A, the Taylor series of f
centered at x0 converges to f on some interval (x0 − δ, x0 + δ)

Theorem
If we restrict Ta from the previous slide to the set of real analytic
functions on R, denoted Cω(R), the map is injective

We can make similar statements about any open intervals of R. It
may also hold for all open sets
We can also restrict our codomain to make this make a bijection
between vector spaces. We can either just use the range or figure out
what sequence properties we need for the Taylor series to converge
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