Lecture #16

MA 511, Introduction to Analysis

June 17, 2021

MA 511, Introduction to Analysis

Lecture #16 1 / 9

Properties of Power Series

Theorem

If $\sum_{n=1}^{\infty} a_n x^n$ converges pointwise on A, it converges uniformly on compact subsets of A

Theorem

If $\sum_{n=1}^{\infty} a_n x^n$ converges on (-R, R), then $\sum_{n=1}^{\infty} na_n x^{n-1}$ converges on (-R, R) as well. The convergence is uniform on compact subsets of (-R, R)

Theorem

Assume that $f(x) = \sum_{n=1}^{\infty} a_n x^n$ converges on an interval $A \subseteq \mathbb{R}$. f is continuous on A and infinitely differentiable on all intervals $(-R, R) \subseteq A$. The derivative of f is given by

$$f'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}$$

Theorem (Problem 6.5.7)

Let $\sum_{n=1}^{\infty} a_n x^n$ be a power series such that $a_n \neq 0$ and $\limsup \left| \frac{a_{n+1}}{a_n} \right| = L$. The series converges on $\left(-\frac{1}{L}, \frac{1}{L} \right)$

Theorem (Problem 6.5.8)

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$$
 if and only if $a_n = b_n$ for all $n \in \mathbb{N}$

Theorem (Taylor's Formula for Coefficients)

If f is an infinitely differentiable function defined on (-R, R) and f can be represented as a power series, $\sum_{n=1}^{\infty} a_n x^n$, then

$$a_n = \frac{f^{(n)}(0)}{n!}$$

• We still need to show that f can be represented this way

MA 511,	Introduction	to	Ana	lysis
---------	--------------	----	-----	-------

Definition (Taylor Polynomial)

Let f be N-times differentiable. For $0 \le n \le N$, we can define, the *n*th Taylor Polynomial of f as

$$S_n = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$$

Theorem (Lagrange Remainder Theorem)

Let f be N + 1-times differentiable on (-R, R) and $E_n(x) = f(x) - S_n(x)$. For all $x \neq 0$ in (-R, R), there exists c such that |c| < |x| and

$$E_N(x) = rac{f^{N+1}(c)}{(N+1)!} x^{N+1}$$

Note: Our choice of c does depend on x but for many (not all) functions we can bound f^(N+1)(c)

Definition (Taylor Polynomial at a)

Let f be N-times differentiable and a in the domain of f. For $0 \le n \le N$, we can define, the *n*th Taylor Polynomial of f centered at a as

$$S_n = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

- We can define a similar shift for power series
- All of our established rules apply simply by shifting the center of all of our statements to *a* instead of 0

Theorem (Cauchy Remainder Theorem (from 6.6.9))

Let f be N + 1-times differentiable on (-R, R), $a \in (-R, R)$, and define the following:

$$S_N(x, a) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
$$E_N(x, a) = f(x) - S_N(x, a)$$

For $x \in (-R, R)$ and $x \neq 0$, we can find $c \in (0, x)$ such that

$$E_N(x) = rac{f^{(N+1)}(c)}{N!}(x-c)^N x$$

We have not actually shown that infinitely differentiable functions can be represented as power series because they can't

Theorem

The function f defined below is infinitely differentiable on \mathbb{R} , but the Taylor Series generated from f converges uniformly on all of \mathbb{R} to the 0 function

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

It is easy to imagine a way to construct a function whose Taylor series converges to the Taylor series of any given function

Theorem

Let $C^{\infty}(A)$ denote the space of all infinitely differentiable functions $f : A \to \mathbb{R}$ for any $A \subseteq \mathbb{R}$. Let $\mathbb{R}^{\mathbb{N}}$ denote the space of all possible sequences of Real numbers. The map $T_a : C^{\infty}(\mathbb{R}) \to \mathbb{R}^{\mathbb{N}}$ defined for any $a \in A$ by

$$T_{a}(f) = \left(\frac{f(a)}{a!}, \frac{f'(a)}{1!}, \frac{f''(a)}{2!}, \dots, \frac{f^{(n)}(a)}{n!}, \dots\right)$$

is not injective

Definition (Analytic Functions)

 $f \in C^{\infty}(A)$ is real analytic on A if, for all $x_0 \in A$, the Taylor series of f centered at x_0 converges to f on some interval $(x_0 - \delta, x_0 + \delta)$

Theorem

If we restrict T_a from the previous slide to the set of real analytic functions on \mathbb{R} , denoted $C^{\omega}(\mathbb{R})$, the map is injective

- We can make similar statements about any open intervals of ℝ. It may also hold for all open sets
- We can also restrict our codomain to make this make a bijection between vector spaces. We can either just use the range or figure out what sequence properties we need for the Taylor series to converge