Lecture #16

MA 511, Introduction to Analysis

June 17, 2021

MA 511, Introduction to Analysis $1/9$

Properties of Power Series

Theorem

If $\sum_{n=1}^{\infty} a_n x^n$ converges pointwise on A, it converges uniformly on compact subsets of A

Theorem

If $\sum_{n=1}^{\infty} a_n x^n$ converges on $(-R, R)$, then $\sum_{n=1}^{\infty} a_n x^{n-1}$ converges on (−R*,* R) as well. The convergence is uniform on compact subsets of $(-R, R)$

Theorem

Assume that $f(x) = \sum_{n=1}^{\infty} a_n x^n$ converges on an interval $A \subseteq \mathbb{R}$. f is continuous on A and infinitely differentiable on all intervals (−R*,* R) ⊆ A. The derivative of f is given by

$$
f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}
$$

Theorem (Problem 6.5.7)

Let $\sum_{n=1}^{\infty} a_n x^n$ be a power series such that $a_n \neq 0$ and lim sup $\Big|$ a_{n+1} an $\Big| = L.$ The series converges on $\left(-\frac{1}{l}\right)$ $\frac{1}{L}, \frac{1}{L}$ $\frac{1}{L}$

Theorem (Problem 6.5.8)

$$
\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n
$$
 if and only if $a_n = b_n$ for all $n \in \mathbb{N}$

Theorem (Taylor's Formula for Coefficients)

If f is an infinitely differentiable function defined on (−R*,* R) and f can be represented as a power series, $\sum_{n=1}^{\infty} a_n x^n$, then

$$
a_n=\frac{f^{(n)}(0)}{n!}
$$

 \blacksquare We still need to show that f can be represented this wav

Definition (Taylor Polynomial)

Let f be N-times differentiable. For $0 \le n \le N$, we can define, the nth Taylor Polynomial of f as

$$
S_n=\sum_{k=0}^n\frac{f^{(k)}(0)}{k!}x^k
$$

Theorem (Lagrange Remainder Theorem)

Let f be $N + 1$ -times differentiable on $(-R, R)$ and $E_n(x) = f(x) - S_n(x)$. For all $x \neq 0$ in $(-R, R)$, there exists c such that $|c| < |x|$ and

$$
E_N(x) = \frac{f^{N+1}(c)}{(N+1)!}x^{N+1}
$$

Note: Our choice of c does depend on x but for many (not all) functions we can bound $f^{(N+1)}(c)$

Definition (Taylor Polynomial at a)

Let f be N-times differentiable and a in the domain of f. For $0 \le n \le N$. we can define, the nth Taylor Polynomial of f centered at a as

$$
S_n = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k
$$

- We can define a similar shift for power series
- All of our established rules apply simply by shifting the center of all of our statements to a instead of 0

Theorem (Cauchy Remainder Theorem (from 6.6.9))

Let f be $N + 1$ -times differentiable on $(-R, R)$, $a \in (-R, R)$, and define the following:

$$
S_N(x, a) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x - a)^n
$$

$$
E_N(x, a) = f(x) - S_N(x, a)
$$

For $x \in (-R, R)$ and $x \neq 0$, we can find $c \in (0, x)$ such that

$$
E_N(x) = \frac{f^{(N+1)}(c)}{N!}(x-c)^N x
$$

We have not actually shown that infinitely differentiable functions can be represented as power series because they can't

Theorem

The function f defined below is infinitely differentiable on $\mathbb R$, but the Taylor Series generated from f converges uniformly on all of $\mathbb R$ to the 0 function

$$
f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
$$

It is easy to imagine a way to construct a function whose $Taylor$ series converges to the Taylor series of any given function

Theorem

Let $C^{\infty}(A)$ denote the space of all infinitely differentiable functions $f: A \to \overline{\mathbb{R}}$ for any $A \subseteq \mathbb{R}$. Let $\mathbb{R}^\mathbb{N}$ denote the space of all possible sequences of Real numbers. The map $\mathcal{T}_a: C^\infty(\mathbb{R}) \to \mathbb{R}^\mathbb{N}$ defined for any $a \in A$ by

$$
T_a(f) = \left(\frac{f(a)}{a!}, \frac{f'(a)}{1!}, \frac{f''(a)}{2!}, ..., \frac{f^{(n)}(a)}{n!}, ...\right)
$$

is not injective

Definition (Analytic Functions)

 $f \in C^{\infty}(A)$ is real analytic on A if, for all $x_0 \in A$, the Taylor series of f centered at x_0 converges to f on some interval $(x_0 - \delta, x_0 + \delta)$

Theorem

If we restrict T_a from the previous slide to the set of real analytic functions on $\mathbb R$, denoted $C^\omega(\mathbb R)$, the map is injective

- \blacksquare We can make similar statements about any open intervals of \mathbb{R} . It may also hold for all open sets
- We can also restrict our codomain to make this make a bijection between vector spaces. We can either just use the range or figure out what sequence properties we need for the Taylor series to converge