Lecture #17

MA 511, Introduction to Analysis

June 21, 2021

MA 511, Introduction to Analysis

Lecture #17 1 / 10

- We know that not every C^{∞} function can be represented by its Taylor series, but if it can, then we can differentiate and integrate term by term
- One strategy for solving differential equations is to:
 - **1** Show there is a unique solution.
 - **2** Assume that solution is analytic.
 - **3** Solve for the Taylor coefficients.
 - 4 Show the Taylor series converges to the only possible solution.
- There are many theorems to show analytic solutions exist just from the structure of the equation
- This is not necessarily the best method but it is a method

Theorem (Weierstrass Approximation Theorem)

Let $f : [a, b] \to \mathbb{R}$ be continuous. Given $\varepsilon > 0$, there exists a polynomial p(x) such that

$$|f(x)-p(x)|<\varepsilon$$

for all $x \in [a, b]$

- It is easy to see that this let us we can construct a sequence of polynomials that converge uniformly to f
- For analytic functions, we can just use Taylor polynomials. But what do we use for everything else?

Building Intuition

First, let's try to approximate functions by piece-wise linear functions

Definition

A continuous function $\phi : [a, b] \to \mathbb{R}$ is polygonal if there exists a partition $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$ such that ϕ is linear on each $[x_i, x_{i+1}]$

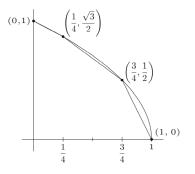


Figure 6.6: POLYGONAL APPROXIMATION OF $f(x) = \sqrt{1-x}$.

Theorem (Polygonal Approximation Theorem)

Let $f : [a, b] \to \mathbb{R}$ be continuous. Given $\varepsilon > 0$, there exists a polygonal function $\phi(x)$ such that

$$|f(x) - \phi(x)| < \varepsilon$$

for all $x \in [a, b]$

- Is this the functions constructed in our proof the approximation that requires the coarsest partition?
- We can easily define a polynomial to pass through the same points as the ones in our polygonal approximation. Does this approximate *f*?

Definition (Interpolating Polynomial)

Let f be any function defines on an interval and x_k define a partition of the domain into M subintervals. The unique polynomial of degree N-1 agreeing with f on all x_k is

$$p(x) = \sum_{k=0}^{M} \left(\prod_{j=0, j \neq k}^{M} \frac{x - x_j}{x_k - x_j} \right) f(x_k)$$

- While this is the *simplest* polynomial matching f at a given set of points it may not be the *best* approximation on that interval
- This method fails to approximate curves well when the points in the partition become close. As we add more points equally spaced, the values grows without bound in between them

- We can approximate with polygonal functions so if we can figure out how to approximate those, the triangle inequality will do the rest
- The only complicated part seems to be the corners so if we can learn the trick for |x|, we can hopefully prove the result
- To approximate |x|, we actually need to look at $\sqrt{1-x}$ first.

Theorem (Exercises 6.7.4 - 6.7.6)

$$\sqrt{1-x} = \sum_{n=0}^{\infty} a_n x^n$$
 for $x \in [-1,1]$ and a_n defined by $a_0 = 1$ and $a_n = \prod_{k=1}^n rac{2k-3}{2k}$

Theorem

For any closed interval [a, b] and $\varepsilon > 0$, there is a polynomial q such that for all $x \in [a, b]$

$$||x|-q(x)|<\varepsilon$$

Definition

Let
$$a \in [-1,1]$$
 be fixed and define $h_a(x) = \frac{1}{2} \left(|x-a| + (x-a) \right)$

Theorem

Let ϕ be a polygonal function on [a, b] with partition points a_k for $0 \le k \le n$. There exist b_k such that

$$\phi(x) = \phi(-1) + \sum_{k=0}^{n-1} b_k h_{a_k}(x)$$

Other Proofs

Definition

A Bernstein basis polynomial is a polynomial of the form

$$b_{\nu,n}(x) = \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu}$$

A Bernstein polynomial is any polynomial which can be written in the form

$$B_n(x) = \sum_{\nu=0}^n \beta_{\nu} b_{\nu,n}(x)$$

Theorem (Bernstein Polynomial Approximation Theorem)

Let f be continuous on [0,1]. Define $P_n(x)$ by

$$P_n(x) = \sum_{v=0}^n f(\frac{v}{n}) b_{v,n}(x)$$

The sequence P_n converges to f uniformly.

The same approximation result holds for any compact set and any appropriate choice of continuous functions

Theorem (Stone-Weierstrass Theorem)

Let $K \subset \mathbb{R}$ be compact and C be a family of continuous functions such that

1
$$C$$
 contains $f(x) = 1$

2 If $p, q \in C$ and $c \in \mathbb{R}$, then $p + q, pq, cq \in C$

3 If $x \neq y$, then there is $p \in C$ such that $p(x) \neq p(y)$

Any continuous function on K can be uniformly approximated by functions in $\ensuremath{\mathcal{C}}$