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Riemann Sums

Definition (Upper and Lower Riemann Sums)
Let P be a partition of [a, b], mk = inf {f (x) : x ∈ [xk , xk+1]} and
Mk = sup {f (x) : x ∈ [xk , xk+1]} for 0 ≤ k ≤ n − 1. The upper and lower
Riemann sums of f with respect to P are defined as follows:

U(f , P) =
n−1∑
k=0

Mk(xk+1 − xk)

L(f , P) =
n−1∑
k=0

mk(xk+1 − xk)

Definition (Refinement of a Partition)
A partition Q is a refinement of a partition P if P ⊆ Q
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Changing Partitions

For the following, we assume f is bounded so that the sums exist

Lemma
L(f , P) ≤ U(f , P) for all f and P

Lemma
If Q is a refinement of P, then L(f , P) ≤ L(f , Q) and U(f , P) ≥ L(f , Q)

Lemma
If P1 and P2 are partitions, then L(f , P1) ≤ U(f , P2)

The behavior is intuitively what we expect
These results give us the behavior we want to eventually define
integration as some sort of limiting process
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Integration

Definition
Let P be the set of all partitions of [a, b]. We define the upper and lower
Riemann integrals of f over [a, b] to be

U(f ) = inf {U(f , P) : P ∈ P}
L(f ) = sup {L(f , P) : P ∈ P}

Lemma
If f is bounded, then L(f ) ≤ U(f )

It is difficult to imagine or work with P, even though it is the most
natural way to define U and L
If f is not bounded, then we have terms that must be infinite in the
definitions of L(f , P), U(f , P), or both. So, our definitions won’t work
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Riemann Integration

Definition (Riemann Integrability)
f is Riemann integrable on [a, b] if U(f ) = L(f ). We define

∫ b
a f (x)dx to

be this value

This definition makes intuitive sense, but we still have the issue of
computing it
What properties of f are necessary for integrability? What are
sufficient?

Theorem (Integrability Criterion)
A bounded function f is integrable on [a, b] if and only if for every ε > 0,
there exists a partition Pε such that

U(f , Pε)− L(U, Pε) < ε
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Integrability and Continuity

U(f , P)− L(f , P) =
∑n−1

k=0(Mk −mk)∆xk so the integrability of f is
related to its change over given intervals
This sounds like uniform continuity

Theorem
If f is continuous on [a, b], then it is integrable

Theorem
If f is bounded on [a, b] and integrable on [c, b] for all c ∈ (a, b), then f is
integrable on [a, b]. A similar result holds for subintervals [a, c]
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