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The Axiom of Completeness

Q is an ordered field. The natural order < is such that for rationals r
and s exactly one of the following to be true: r < s, r = s, or r > s.

Definition
A field is any set where addition and multiplication are well-defined
operations that are commutative, associative, and obey the distributive
property a(b + c) = ab + ac. There must be an additive identity and a
multiplicative identity. All elements must have an additive inverse and all
nonzero elements must have a multiplicative inverse.

R should be an ordered field, which contains and extends Q, but what
exactly is a real number and how can we “plug the gaps” in Q?

Axiom of Completeness
Every nonempty set of real numbers that is bounded above has a least
upper bound.
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Least Upper Bounds and Greatest Lower Bounds

Definition
A real number s = sup A is the least upper bound (or supremum) for a
set A ⊆ R if it meets the following two criteria:

i s is an upper bound for A
ii if b is any upper bound for A then s ≤ b

If s ∈ A it is called the maximum of A.

Definition
A real number i = inf A is the greatest lower bound (or infimum) for a
set A ⊆ R if it meets the following two criteria:

i i is an lower bound for A
ii if b is any lower bound for A then i ≥ b

If i ∈ A it is called the minimum of A.

If they exist, are sup A and inf A unique?
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Consequences of Completeness

The first result that we can prove perhaps better expresses that R
contains no “gaps.”

Theorem (Nested Interval Property)
For each n ∈ N, assume we are given a closed interval:

In = [ab, bn] = {x ∈ R : an ≤ x ≤ bn}

Assume also that each In contains In+1. Then, the resulting nested
sequence of closed intervals:

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·

has a nonempty intersection, i.e.
⋂∞

n=1 In 6= ∅.

We will see later that the Nested Interval Property could have been
our fundamental axiom of the real numbers (provided that we also
assumed the Archimedean Property).
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Density of Q in R

R is an extension of Q, which is an extension of N, but how do N and
Q sit inside R?

Theorem (Archimedean Property)
i Given any number x ∈ R there exists an n ∈ N satisfying n > x.
ii Given any real number y > 0, there exists an n ∈ N satisfying 1

n < y.

Theorem (Density of Q in R)
For every two real numbers a and b with a < b, there exists a rational
number r satisfying a < r < b.

Corollary
Given any two real numbers a and b, there exists an irrational number t
satisfying a < t < b.
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The Existence of Square Roots

Theorem
There exists a real number α ∈ R satisfying α2 = 2.

Similarly, we can show
√

x exists for any x ≥ 0.
Using the binomial theorem to expand:(

α + 1
n

)m
=

m∑
k=0

(
m
k

)
αm−k

nk = αm + mαm−1

n + · · ·+ 1
nm

we can also show that m
√

x exists for arbitrary values of m ∈ N.

Are the rationals Q and the irrationals I each closed under addition
and multiplication?
If r ∈ Q and t ∈ I, what can we say about a + t and at (assuming
a 6= 0)?
What are the “proportions” of Q and I in R?
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Cardinality

What is the “size” of Q anyway?

Definition
A function f : A→ B is one-to-one (1-1) if a1 6= a2 in A implies that
f (a1) 6= f (a2) in B. The function f is onto if, given any b ∈ B, it is
possible to find an element of a ∈ A for which f (a) = b. A function that is
both one-to-one and onto is called a one-to-one correspondence.

Definition
The cardinality of a set refers is a measure of its size. The set A has the
same cardinality as B if there exists a one-to-one correspondence
f : A→ B. In this case, we write A ∼ B.

Example: If E is the set of even natural numbers, then E ∼ N ∼ Z. If
(a, b) is any interval of real numbers, then (a, b) ∼ R.
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