Lecture #20

MA 511, Introduction to Analysis

June 24, 2021

MA 511, Introduction to Analysis $\frac{1}{13}$

Lemma (Exercise 7.3.2)

Thomae's function is integrable on all intervals $[a, b]$ and $\int_a^b t = 0$

Lemma

The function
$$
h(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{otherwise} \end{cases}
$$
, where C is the Cantor set, is integrable on [0, 1] and $\int_a^b h = 0$

Thomae's function is discontinuous on a countable, dense subset of \mathbb{R} h discontinuous on an uncountable set of points

- **n** Measure Theory and Lebesgue integration are the main focus of MA 711/higher level Real Analysis courses
- \blacksquare In our definition of integration, we used the lengths of intervals to determine the areas of rectangles approximating the area under curves
- Measure theory is how we define this concept in general
- \blacksquare The Lebesgue measure on $\mathbb R$ gives intervals the lengths we expect and is the measure we implicitly use.

Definition

A set A is (Lebesgue) measure zero if, for all *ε >* 0, A can be covered by a countable collection of intervals, $\left\{\left(a_{n}, b_{n}\right)\right\}_{n=1}^{\infty}$, such that $\sum_{n=1}^{\infty} b_n - a_n$ ≤ ε

Theorem

Any set $A \subset \mathbb{R}$ which is finite or countable has measure zero

Lemma

Any subset of a measure zero set is measure zero

Theorem

The countable union of measure zero sets has measure zero.

These sets will be crucial for our classification of Riemann integrable functions

■ They are also important for the study of Lebesgue integration

Definition (*α*-Continuity)

f is α -continuous at x if there exists $\delta > 0$ such that if, for all $y, z \in V_\delta(x)$, $|f(y) - f(z)| < \alpha$. The set of points where f is not *α*-continuous is D *α*

Definition (Uniform *α*-Continuity)

f is uniformly α -continuous on [a, b] if there exists $\delta > 0$ such that $|x - y| < \delta$ implies that $|f(x) - f(y)| < \alpha$

Theorem

If $\alpha < \alpha'$, then $D^{\alpha'} \subseteq D^{\alpha}$. The set of points where f is discontinuous is $D=\bigcup_{\alpha\in\mathbb{R}^+}D^\alpha=\bigcup_{n=1}^\infty D^\frac{1}{n}$

Theorem

For $\alpha > 0$, D^{α} is closed.

MA 511, Introduction to Analysis **[Lecture](#page-0-0) #20** 5 / 13

Theorem (Lebesgue's Theorem)

Let f be a bounded function on [a, b]. f is Riemann integrable if and only if the set of discontinuities of f has measure zero

■ This limitation is not true for the Lebesgue integral (MA 711 material)

- We will contruct a function which is differentiable but not continuous on the Cantor set
- We will modify this construction for a "fat" Cantor set so that f^\prime is discontinuous on a set with positive measure

Lemma

The function g defined below is differentiable but g' is discontinuous at 0

$$
g(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x > 0 \\ 0 & x \le 0 \end{cases}
$$

Definition

Define f_n to be a sequence of functions with the following properties

- 1 $f_n(x) = 0$ on C_n
- **2** For every boundary point of C_n , x_k , $f_n(x) = g(f_k(x))$ on a small interval in C_n^c touching x_k where $l_k(x)$ is a linear map taking 0 to x_k and $\delta > 0$ to C_n^c for δ small enough
- 3 f_n is differentiable and bounded by all functions $(x_k x)^2$ on the domain it is not yet defined
- We have defined a sequence of functions which are differentiable everywhere but for which f'_n is not continuous at the boundary points of C_n

Non-Integrable Derivatives (Continued)

Figure 7.4: A GRAPH OF $f_2(x)$.

Theorem

The function $f = \lim_{n \to \infty} f_n$ is differentiable everywhere but f' is discontinuous on C

Corollary

$$
f'
$$
 is integrable on [0, 1] and $\int_0^x f' = f(x)$

Definition (Fat Cantor Set)

Let $\tilde{\mathcal{C}}_0 = [0,1]$ and inductively define $\tilde{\mathcal{C}}_n$ as follows:

 \blacksquare Begin with a copy of $\widetilde{\mathsf{C}}_{n-1}$

 $\overline{\mathbf{2}}$ For each of interval, remove the middle subinterval of length $\frac{1}{3^{n+1}}$

The set
$$
\tilde{C} = \bigcap_{n=0}^{\infty} \tilde{C}_n
$$
 is a fat Cantor set

Definition

Let \tilde{f}_n be constructed in the same way as f_n but using the boundary points of $\tilde{\mathcal{C}}_n$ for the points that $\tilde{f'}_n$ is discontinuous. Let $\tilde{f} = \lim_{n \to \infty} \tilde{f}_n$

Lemma

 \tilde{f} is differentiable everywhere and \tilde{f}' is discontinuous on \tilde{C} . \tilde{f}' is not integrable

Non-Integrable Derivatives (Continued)

Figure 7.5: A DIFFERENTIABLE FUNCTION **WITH** \mathbf{A} NON-INTEGRABLE DERIVATIVE.

Lesbesgue Integration

- The approach for defining the Lebesgue integral (assuming that we have defined the Lebesgue measure) is as follows:
	- 1 Define the integral of characteristic functions (1 on A and 0 otherwise) as the measure of A
	- 2 Define the integral of simple functions (positive linear combinations of characteristic functions) the as the obvious sum
	- 3 Define the integral of positive functions as the supremum over all simple functions less than or equal to f
	- 4 Extend to all functions by computing the positive and negative parts separately as positive integrals and then taking the difference
- **All Riemann integrable functions are Lebesgue integrable but the** reverse is not true
- **There are functions which are not Lesbesgue integrable but which can** be handled by improper Riemann integrals
- The Generalized Riemann Integral takes integration even further