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Trigonometric Series

Definition (Trigonometric/Fourier Series)
A series of the form

a0 +
∞∑

n=1
an cos(nx) + bn sin(nx)

is called a trigonometric series

If we consider complex numbers and use Euler’s equation,
eix = cos(x) + i sin(x), we have an even nicer formula

∞∑
n=−∞

αneinx

We can recover an and bn via the formula an = αn+α−n
2 and

bn = αn−α−n
2
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Periodic Functions

Definition (Periodic Functions)
A function f : R→ R is periodic if there exists ξ ∈ R+ such that for all
x ∈ R

f (x) = f (x + ξ)

A simple calculation shows that if ξ satisfies the equation above, then
so does nξ for all n ∈ N

Definition (Period of a Function)
If f is periodic, the period of f is the smallest value ξ such that
f (x) = f (x + ξ) if such a value exists

We can just as easily think of these as functions on (− ξ
2 ,

ξ
2 ] extended

periodically
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Fourier’s Claim

The result Fourier claimed is ”Thus, there is no function... which
cannot be expressed by a trigonometric series”
In more modern terminology, ”All periodic functions can be written as
limits of trigonometric series”
The conditions needed for convergence in most cases are much milder
than the conditions needed for Taylor series
What conditions do we need to get convergence? Is there a formula
for an and bn?
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Inner Product Spaces

We know that on Rn, the dot product takes 2 vectors and returns a
real number
We also know that this can be used to find angles between vectors
and the projections from 1 vector onto another
The idea of an inner product is to generalize this

Definition (Inner Product)
An inner product on a real vector space, V is a map 〈·, ·〉 : V × V → R
which satisfies the following properties for all x , y , z ∈ V and a ∈ R

1 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉
2 〈ax , y〉 = a〈x , y〉
3 〈x , y〉 = 〈y , x〉
4 〈x , x〉 > 0 if x 6= 0
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Orthonormal Bases in Inner Product Spaces

Definition (Orthogonality)
Vectors f and g in an inner product space are said to be orthogonal if
〈f , g〉 = 0

Definition (Normality)
A vector f in an inner product space is said to be normal if 〈f , f 〉 = 1

Definition (Basis)
A collection of vectors, B, in an inner product space, H, is a basis if all
h ∈ H can be written as a (countable) linear combination of vectors in B
and B is linearly independent

These are the normal properties from Rn but rewritten for ANY inner
product space
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L2 Space

Technically, we need Lesbegue measure to define L2 space

Definition (L2 Space)
L2([a, b]) is the space of functions* for which

∫ b
a f 2(x)dx <∞. The map

〈f , g〉 =
∫ b

a
f (x)g(x)dx

is an inner product on L2

Using this inner product, we can define the ”length” of functions, the
”distance” between them, and the ”angle” between them in similar
ways as our usual vectors using the dot product
Functional analysis is the relevant field for the analysis of spaces like
these
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Rephrasing Fourier’s Claim

Using this new terminology, we can rewrite Fourier’s claim in a
functional analysis framing

Theorem
The set of functions {1, cos(nx), sin(nx)}∞n=1 forms a basis for the space
L2((−π, π])

Corollary

The set of functions
{

1
2π ,

1
π cos(nx), 1

π sin(nx)
}∞

n=1
forms an orthonormal

basis for the space L2((−π, π])

Technically, Fourier’s claim only really states that the trigonometric
series converges pointwise. We will also show the convergence works
in other ways
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Fourier Coefficients

If we believe our theorem, then we can use the vector projection
formula to get our coefficients.

f =
∑
b∈B

〈f , b〉
〈b, b〉b

Alternatively, standard algebra and integration can also give our
formula

Theorem
The Fourier coefficients for f are as follows:

a0 = 1
2π

∫ π

−π
f (x)dx

an = 1
π

∫ π

−π
f (x) cos(nx)dx

bn = 1
π

∫ π

−π
f (x) sin(nx)dx
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Example 1

MA 511, Introduction to Analysis Lecture #22 10 / 13



Riemann-Lebesgue Lemma

We will be treating functions as being periodically extended to all of
R unless otherwise stated
Properties like continuity are taken to mean that their periodic
extensions have these properties

Theorem (Riemann-Lebesgue Lemma)
Let h be a continuous function on (−π, π]. Then as n→∞, we get∫ π

−π
h(x) cos(nx)dx → 0∫ π

−π
h(x) sin(nx)dx → 0
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Conditions for Convergence

As we have mentioned, we need different conditions on f to make the
corresponding Fourier series converge in different ways
L2 convergence actually only needs a function to be Lebesgue
integrable
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Additional Convergence Theorems

Theorem
Let f be continuous on (−π, π] and differentiable at c. Then,
limn→∞ Sn(c) = f (c)

Theorem
Let f be continuous on (−π, π]. Then σn(x)→ f (x) uniformly where

σn(x) = 1
n + 1

n∑
k=0

Sk(x)

MA 511, Introduction to Analysis Lecture #22 13 / 13


