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A Review of the Reals

m When we first defined the Real numbers we discussed a few important
properties
R is an ordered field
R contains Q
R is complete (Axiom of Completeness)
m R has some other interesting properties worth exploring in generality

R is a topological space

R is a (real) normed vector space
[ R is a (real) inner product space
R is a measure space

m Each of these properties can be explored in more generality

m Many of these properties automatically give other properties

IPS = NVS =—= MS = TS
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Our Focus for This Course

m Most of what we have done has been focused on R as a metric space
m We have discussed toplogical properties but these discussions always
used the frame of metric spaces

m We have used the ordered field properties of R implicitly but only to
help our work on R as a metric space

m Our discussions of functions and sequences thereof were all in terms
of metric space properties as well

MA 511, Introduction to Analysis Lecture #23



Metric Spaces

m We can generalize the properties of distances on R to any set with an
appropriately defined notion of distance

Definition (Metric Space)

A metric space is a set, X, along with a map, d : X x X — R, called the
metric, which satisfies the following properties for all x,y € X
d(x,y) >0and d(x,y) =0 = x=y
d(x,y) = d(y, x)
d satisfies the triangle inequality: For all z € X, we get
d(x,y) < d(x,z) +d(z,y)

v

m This matches all of our intuitions about what "distance” should mean
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Sequences in Metric Spaces

Definition (Convergent Sequences)

A sequence, (xp), of points in the metric space (X, d) is said to converge
to a limit x if for all € > 0, there exists N € N such that d(x,, x) < ¢ for
aln> N

Definition (Cauchy Sequences)

A sequence, (x,), of points in the metric space (X, d) is said to be Cauchy
if for all € > 0, there exists N € N such that d(x,, xm) < € for all n,m > N

Any sequence which converges is a Cauchy sequence

Definition (Completeness)

A metric space is complete if all Cauchy sequences converge to a point in
X
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A Brief Introduction to Topology

Definition (Topology on a Set

A topology on a set, X, is a collection of subsets, 7, such that for all
A; € T, the following hold

T contains both X and @
T contains J;c; A; for any index /
T contains (i1 A;
O C X is called open if O € T. C C X is called closed if C€ is open

v

Definition (Basis for a Topology)

A basis, B, for a topology is a collection of sets B; € T such that all sets
A €T can be written as A= ¢, Bior A=, B;

m Having open sets allows us to discuss properties like continuity in
more general terms
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The Metric Topology

Definition (e-neighborhoods)

Let (X, d) be a metric space. We define the e-neighborhood of x as
Vox)={y € X:d(x,y) <e}

Theorem (The Metric Topology)

The set of all e-neighborhoods of all points is a basis for a topology on X.
We call this the metric topology

m Defining the metric topology like this unifies the topological
definitions of properties with the metric space notions
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Properties of the Metric Topology

A set, A, is open if and only if for all x € A, there is € > 0 such that
Vi(x)C A

Definition (Limit Points)

x is a limit point of A if V.(x)NA # {x}

x Is a limit point of A if and only if there exists a sequence of points
(xn) € A\ {x} such that (x,) — x

A set, A, is closed if and only if A contains all of its limits points
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Definition (Compact Sets)

A set A, is compact in the sequential /metric sense if every sequence (x;,)
contained in A has a subsequence (xp, ) which converges to a point in A

Definition (Boundedness)

A set, A, in a metric space is bounded if for all x,y € A, there exists
M > 0 such that d(x,y) < M

Any compact set in a metric space must be closed and bounded

m Notice that this theorem is NOT an if and only if statement

m Just like many functions had nice properties on compact subsets of R,
functions on compact sets of more general spaces often have nice
properties
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Maps Between Spaces

Definition (Continuity)

Let (X, dx) and (Y, dy) be metric spaces. Amap f: X — Y'is
continuous at x € X in the metric sense if for all € > 0, there exists § > 0
such that dx(x, x") < d implies that dy (f(x),f(x)) <e

m We can define uniform continuity as well as notions of convergence of
sequences of maps in a similar way as with R

m We cannot define series of points or of functions because we do not
have a way of adding points together

m Many theorems about the behavior of functions from R carry over
directly to (complete) metric spaces as well

m Anything which required the statement "closed and bounded implies
compact” is likely to fail (in co-dimensional spaces in particular)
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Density of Sets

Definition (Closure of a Set)

The closure of A is defined to be

A= {x € X:ais a limit points of A}

Definition (Dense Sets)

A set, A, is dense in (X,d) if A= X.

Definition (Interior of a Set)

The interior of a set, A, is the set

A° = {x € A: 3 > 0 such that V.(x) C A}

Definition (Nowhere-Dense Sets)

A set, A, is nowhere-dense if A° = @

MA 511, Introduction to Analysis Lecture #23 11 /15



The Baire Category Theorem

Let {0,}22, be a countable collection of open, dense sets. Then,

(1 0n# 9
n=1

A set, A, is nowhere dense if and only if A is dense

Theorem (Baire Category Theorem)

If (X, d) is a complete metric space, then X cannot be written as a
countable union of nowhere-dense sets

m So, in all metric spaces, there is a natural categorization of sets by
whether they can or cannot be expressed as the countable union of
nowhere-dense sets
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Differentiability is Rare

The set of functions,

D = {f € C[0,1] : f is differentiable at at least 1 point}

is of first category in (C[0,1], ds)

m One key idea used in the proof is the equivalence between the
statements "|f(x) — p(x)| < e for all x € [0,1]" and "d(f, p) < &”
for p any continuous function

m This gives us a new perspective on the Stone-Weierstrass theorem
(and the other approximation theorems). Any set of continuous
functions satisfying the SW theorem hypotheses must be dense in
(C[0,1], dw)
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Topological Notions

Definition (Compactness)

A set, A, is compact in the topological sense if every cover of A by open
sets has a finite subcover

Definition (Continuity)

Let (X, 7x) and (Y, 7Ty) be topological spaces. A map f: X — Y'is
continuous at x € X in the topological sense if for all B € Ty such that
f(x) € B, there is a set A € Tx such that x € A and f(A) C B

Definition (Density)

A set, A, is dense in (X, T) in the topological sense if for all B € T \ {@},
ANB#Q

v
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Topological Notions (Continued)

Definition (Interior)

The interior of a set, A, is the set

A°={x € A:3B € T such that x € Band b C A}

Definition (Nowhere-Density)

A set, A, is nowhere-dense if A" = @

For metric spaces with the respective metric topologies, the topological
and metric definitions of the previous properties are equivalent.
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