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A Review of the Reals

When we first defined the Real numbers we discussed a few important
properties

1 R is an ordered field
2 R contains Q
3 R is complete (Axiom of Completeness)

R has some other interesting properties worth exploring in generality
4 R is a topological space
5 R is a (real) normed vector space
6 R is a (real) inner product space
7 R is a measure space

Each of these properties can be explored in more generality
Many of these properties automatically give other properties

I.P.S =⇒ N.V.S =⇒ M.S =⇒ T.S
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Our Focus for This Course

Most of what we have done has been focused on R as a metric space
We have discussed toplogical properties but these discussions always
used the frame of metric spaces
We have used the ordered field properties of R implicitly but only to
help our work on R as a metric space
Our discussions of functions and sequences thereof were all in terms
of metric space properties as well
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Metric Spaces

We can generalize the properties of distances on R to any set with an
appropriately defined notion of distance

Definition (Metric Space)
A metric space is a set, X , along with a map, d : X × X → R, called the
metric, which satisfies the following properties for all x , y ∈ X

1 d(x , y) ≥ 0 and d(x , y) = 0 =⇒ x = y
2 d(x , y) = d(y , x)
3 d satisfies the triangle inequality: For all z ∈ X , we get

d(x , y) ≤ d(x , z) + d(z , y)

This matches all of our intuitions about what ”distance” should mean
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Sequences in Metric Spaces

Definition (Convergent Sequences)
A sequence, (xn), of points in the metric space (X , d) is said to converge
to a limit x if for all ε > 0, there exists N ∈ N such that d(xn, x) < ε for
all n ≥ N

Definition (Cauchy Sequences)
A sequence, (xn), of points in the metric space (X , d) is said to be Cauchy
if for all ε > 0, there exists N ∈ N such that d(xn, xm) < ε for all n,m ≥ N

Theorem
Any sequence which converges is a Cauchy sequence

Definition (Completeness)
A metric space is complete if all Cauchy sequences converge to a point in
X
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A Brief Introduction to Topology

Definition (Topology on a Set)
A topology on a set, X , is a collection of subsets, T , such that for all
Ai ∈ T , the following hold

1 T contains both X and Ø
2 T contains

⋃
i∈I Ai for any index I

3 T contains
⋂n

j=1 Aj

O ⊆ X is called open if O ∈ T . C ⊆ X is called closed if C c is open

Definition (Basis for a Topology)
A basis, B, for a topology is a collection of sets Bi ∈ T such that all sets
A ∈ T can be written as A =

⋃
i∈I Bi or A =

⋂n
j=1 Bj

Having open sets allows us to discuss properties like continuity in
more general terms
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The Metric Topology

Definition (ε-neighborhoods)
Let (X , d) be a metric space. We define the ε-neighborhood of x as
Vε(x) = {y ∈ X : d(x , y) < ε}

Theorem (The Metric Topology)
The set of all ε-neighborhoods of all points is a basis for a topology on X.
We call this the metric topology

Defining the metric topology like this unifies the topological
definitions of properties with the metric space notions
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Properties of the Metric Topology

Theorem
A set, A, is open if and only if for all x ∈ A, there is ε > 0 such that
Vε(x) ⊆ A

Definition (Limit Points)
x is a limit point of A if Vε(x) ∩ A 6= {x}

Theorem
x is a limit point of A if and only if there exists a sequence of points
(xn) ∈ A \ {x} such that (xn)→ x

Theorem
A set, A, is closed if and only if A contains all of its limits points
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Compactness

Definition (Compact Sets)
A set A, is compact in the sequential/metric sense if every sequence (xn)
contained in A has a subsequence (xnk ) which converges to a point in A

Definition (Boundedness)
A set, A, in a metric space is bounded if for all x , y ∈ A, there exists
M > 0 such that d(x , y) ≤ M

Theorem
Any compact set in a metric space must be closed and bounded

Notice that this theorem is NOT an if and only if statement
Just like many functions had nice properties on compact subsets of R,
functions on compact sets of more general spaces often have nice
properties
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Maps Between Spaces

Definition (Continuity)
Let (X , dX ) and (Y , dY ) be metric spaces. A map f : X → Y is
continuous at x ∈ X in the metric sense if for all ε > 0, there exists δ > 0
such that dX (x , x ′) < δ implies that dY (f (x), f (x ′)) < ε

We can define uniform continuity as well as notions of convergence of
sequences of maps in a similar way as with R
We cannot define series of points or of functions because we do not
have a way of adding points together
Many theorems about the behavior of functions from R carry over
directly to (complete) metric spaces as well
Anything which required the statement ”closed and bounded implies
compact” is likely to fail (in ∞-dimensional spaces in particular)

MA 511, Introduction to Analysis Lecture #23 10 / 15



Density of Sets

Definition (Closure of a Set)
The closure of A is defined to be

A = {x ∈ X : a is a limit points of A}

Definition (Dense Sets)
A set, A, is dense in (X , d) if A = X .

Definition (Interior of a Set)
The interior of a set, A, is the set

A◦ = {x ∈ A : ∃ε > 0 such that Vε(x) ⊆ A}

Definition (Nowhere-Dense Sets)
A set, A, is nowhere-dense if A◦ = Ø
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The Baire Category Theorem

Theorem
Let {On}∞n=1 be a countable collection of open, dense sets. Then,

∞⋂
n=1

On 6= Ø

Theorem
A set, A, is nowhere dense if and only if Ac is dense

Theorem (Baire Category Theorem)
If (X , d) is a complete metric space, then X cannot be written as a
countable union of nowhere-dense sets

So, in all metric spaces, there is a natural categorization of sets by
whether they can or cannot be expressed as the countable union of
nowhere-dense sets
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Differentiability is Rare

Theorem
The set of functions,

D = {f ∈ C [0, 1] : f is differentiable at at least 1 point}

is of first category in (C [0, 1], d∞)

One key idea used in the proof is the equivalence between the
statements ”|f (x)− p(x)| < ε for all x ∈ [0, 1]” and ”d∞(f , p) < ε”
for p any continuous function
This gives us a new perspective on the Stone-Weierstrass theorem
(and the other approximation theorems). Any set of continuous
functions satisfying the SW theorem hypotheses must be dense in
(C [0, 1], d∞)
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Topological Notions

Definition (Compactness)
A set, A, is compact in the topological sense if every cover of A by open
sets has a finite subcover

Definition (Continuity)
Let (X , TX ) and (Y , TY ) be topological spaces. A map f : X → Y is
continuous at x ∈ X in the topological sense if for all B ∈ TY such that
f (x) ∈ B, there is a set A ∈ TX such that x ∈ A and f (A) ⊆ B

Definition (Density)
A set, A, is dense in (X , T ) in the topological sense if for all B ∈ T \ {Ø},
A ∩ B 6= Ø
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Topological Notions (Continued)

Definition (Interior)
The interior of a set, A, is the set

A◦ = {x ∈ A : ∃B ∈ T such that x ∈ B and b ⊆ A}

Definition (Nowhere-Density)
A set, A, is nowhere-dense if A◦ = Ø

Theorem
For metric spaces with the respective metric topologies, the topological
and metric definitions of the previous properties are equivalent.
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