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Euler's Sum

m We have seen but never proven that

il 2
PP
=n 6

m The prof in the book relies on expressing sin(x) as an infinite sum
AND and infinite product

sin(x) = — nz::l (2(,3)1)!
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m There are dozens of proofs using all sorts of analytic techniques.
Some are purely based on Taylor series and convergence properties
while other use multivariable calculus

m 3bluelbrown has an interesting informal explanation based around a
geometric construction and the inverse square law for light intensity

MA 511, Introduction to Analysis Lecture #24



Wallis's Product

m Wallis's product comes from the spacial case of the sin(x) product

formula at 7
ﬁ 4n? T
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n=1

m We define b, = [;2 sin”(x)dx and use integration by parts and
induction to prove that
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Wallis's Product (Continued)

m Some algebra/induction shows that

bo H§:1 (k—;l) if n even
n—1

biILZ, (42)  if nodd

m If we look at lim,_ o b;L:l some algebra will reveal that the limit is 1

b, =

m Algebra will also reveal that % lim,_ oo bn_ s the Wallis product

b2n+1
which must therefore have value %

MA 511, Introduction to Analysis Lecture #24



The arcsin(x) Formula

We will also need the Taylor series for arcsin(x) for this proof.
- _ 1 . . . 1
arcsin’(x) = Tz SO if we can find the Taylor series for i we

can apply term by term integration to find the series for arcsin(x)

We can inductively show that the coefficients are ag = 1 and
Some algebra can relate these terms to the Wallis product again,
giving the following limit

lim 1

n—00 anﬁ
We need to show that this converges on (—1, 1), but our usual
versions of the remainder theorem do not work. We will need a
different version

== s
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The arcsin(x) Formula (Continued)

Theorem (Integral Form of the Remainder Theorem)

Let f be N + 1 times continuously differentiable on (—R, R) and En(x) be
the usual Taylor series error function. Then

En(x) = % /0 N (1) (x — 1)Vt

m The book has a description of how to prove this that you can look at
if you are interested

m We claim that this form will let us show convergence of the formula

for \/11_7 on (—1,1)
m With that being the case, we can conclude that for —1 < x < 1
oo
; _ n  2p41
arcsin(x) = ,;0 TR
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Evaluating the Sum

m 0 = arcsin(sin(0)) for 5 <0 < 7

m Using out series for arcsin(x) we get

[ee]
_ dn . 2p41 9
0 ,,EZO ona1on (9)

m We can related this back to our work on the Wallis product by
integrating over [0, 7]
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Evaluating the Sum (Continued)

m After some cancellation and some integration, we arrive at the formula

7.‘_2

i 1
—(2n+1)*> 8

m From this and some clever algebra, we get our result
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The Riemann Zeta Function

m We know that > 72, # converges for s > 2 by the comparison test

and that it diverges for s =1
m |t seems natural to ask what Y 77 % looks like as a function of s
m This is the beginning of the definition of the Riemann Zeta function

m Some complex analysis results show that 3-5°; L converges for
R(s) > 1 so we can define {(s) = 3252, X on this domain

m We can use complex analytic continuation (expressing this function as
a power series) we expand the domain to be C\ {1}

co 1

ne1 75 = Ilpis prime (#) so the behavior of this function

somehow encodes information about the behavior of prime numbers

m The Riemann Hypothesis states that ((s) = 0 only if s = —2n or if
Rs = % If you can prove this, you get a million dollars and your
name in every analysis and number theory textbook written for the
rest of time
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