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Euler’s Sum

We have seen but never proven that
∞∑

n=1

1
n2 = π2

6

The prof in the book relies on expressing sin(x) as an infinite sum
AND and infinite product

sin(x) = −
∞∑

n=1

(−x)n

(2n − 1)!

= x
∞∏

n=1

(
1− x

nπ

)(
1 + x

nπ

)
There are dozens of proofs using all sorts of analytic techniques.
Some are purely based on Taylor series and convergence properties
while other use multivariable calculus
3blue1brown has an interesting informal explanation based around a
geometric construction and the inverse square law for light intensity
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Wallis’s Product

Wallis’s product comes from the spacial case of the sin(x) product
formula at π

2
∞∏

n=1

(
4n2

4n2 − 1

)
= π

2

We define bn =
∫ π

2
0 sinn(x)dx and use integration by parts and

induction to prove that

b0 = π

2
b1 = 1

bn = n − 1
n bn−2
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Wallis’s Product (Continued)

Some algebra/induction shows that

bn =

b0
∏ n

2
k=1

(
k−1

k

)
if n even

b1
∏ n−1

2
k=1

(
k−1

k

)
if n odd

If we look at limn→∞
b2n

b2n+1
, some algebra will reveal that the limit is 1

Algebra will also reveal that b0
b1

limn→∞
b2n

b2n+1
is the Wallis product

which must therefore have value π
2
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The arcsin(x) Formula

We will also need the Taylor series for arcsin(x) for this proof.
arcsin′(x) = 1√

1−x2 so if we can find the Taylor series for 1√
1−x2 we

can apply term by term integration to find the series for arcsin(x)
We can inductively show that the coefficients are a0 = 1 and
an = (2n)!

22n(n!)2

Some algebra can relate these terms to the Wallis product again,
giving the following limit

lim
n→∞

1
an
√

n =
√
π

We need to show that this converges on (−1, 1), but our usual
versions of the remainder theorem do not work. We will need a
different version
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The arcsin(x) Formula (Continued)

Theorem (Integral Form of the Remainder Theorem)
Let f be N + 1 times continuously differentiable on (−R,R) and EN(x) be
the usual Taylor series error function. Then

EN(x) = 1
N!

∫ x

0
f (N+1)(t)(x − t)Ndt

The book has a description of how to prove this that you can look at
if you are interested
We claim that this form will let us show convergence of the formula
for 1√

1−x2 on (−1, 1)
With that being the case, we can conclude that for −1 < x < 1

arcsin(x) =
∞∑

n=0

an
2n + 1x2n+1
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Evaluating the Sum

θ = arcsin(sin(θ)) for −π
2 ≤ θ ≤

π
2

Using out series for arcsin(x) we get

θ =
∞∑

n=0

an
2n + 1 sin2n+1(θ)

We can related this back to our work on the Wallis product by
integrating over [0, π

2 ]∫ π
2

0
θdθ =

∞∑
n=0

an
2n + 1b2n+1
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Evaluating the Sum (Continued)

After some cancellation and some integration, we arrive at the formula
∞∑

n=0

1
(2n + 1)2 = π2

8

From this and some clever algebra, we get our result
1

(2k)2 = 1
4

1
k2

∞∑
n=1

1
n2 −

1
4

∞∑
n=1

1
n2 =

∞∑
n=1

1
n2 −

∞∑
n=1

1
(2n)2

3
4

∞∑
n=1

1
n2 =

∞∑
n=0

1
(2n + 1)2

∞∑
n=1

1
n2 = 4

3
π2

8 = π2

6
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The Riemann Zeta Function

We know that
∑∞

n=1
1
ns converges for s ≥ 2 by the comparison test

and that it diverges for s = 1
It seems natural to ask what

∑∞
n=1

1
ns looks like as a function of s

This is the beginning of the definition of the Riemann Zeta function
Some complex analysis results show that

∑∞
n=1

1
ns converges for

<(s) > 1 so we can define ζ(s) =
∑∞

n=1
1
ns on this domain

We can use complex analytic continuation (expressing this function as
a power series) we expand the domain to be C \ {1}∑∞

n=1
1
ns =

∏
p is prime

(
1

1−p−s

)
so the behavior of this function

somehow encodes information about the behavior of prime numbers
The Riemann Hypothesis states that ζ(s) = 0 only if s = −2n or if
<s = 1

2 . If you can prove this, you get a million dollars and your
name in every analysis and number theory textbook written for the
rest of time
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