

MA 511, Introduction to Analysis

May 26, 2021

MA 511, Introduction to Analysis

Lecture #3 1 / 6

Countable Sets

Definition

A set A is **finite** if $A \sim \{1, ..., n\}$ for some n. A set A is **countable** if $\mathbb{N} \sim A$. An infinite set that is not countable is called an **uncountable** set.

Theorem

- **The set** \mathbb{Q} *is countable.*
- **ii** The set \mathbb{R} is uncountable.

Theorem

If $A \subseteq B$ and B is countable, then A is either countable or finite.

Theorem

If A_1, \ldots, A_m are each countable sets then the union $A_1 \cup \cdots \cup A_m$ is countable.

If A_n is a countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable.

Theorem

The open interval $(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$ is uncountable.

• There is a hierarchy of infinite sets that continues well beyond the continuum of \mathbb{R} .

Definition

Given a set A, the **power set** P(A) (or 2^A) refers to the collection of all subsets of A. (Note that P(A) is itself a set whose elements are sets.)

Theorem (Cantor's Theorem)

Given any set A, there does not exist a function $f : A \rightarrow P(A)$ that is onto.

Example: $P(\mathbb{N})$ is uncountable and in fact $P(\mathbb{N}) \sim \mathbb{R}$.

The relationship of having the same cardinality is an equivalence relation.

Definition

A binary relation \sim on a set A is an **equivalence relation** if and only if for all *a*, *b* and *c* in A:

- **i** $a \sim a$ (reflexivity)
- ii $a \sim b$ if and only if $b \sim a$ (symmetry)

iii if $a \sim b$ and $b \sim c$, then $a \sim c$ (transitivity)

Equivalence relations provide partitions of the set *A* into **equivalence** classes of the form $[a] = \{x \in A : x \sim a\}$.

<u>Example</u>: Equality (=) on \mathbb{R} is an equivalence relation. Having the same parity (even or odd) is an equivalence relation on \mathbb{Z} . Having the same remainder modulo n is an equivalence relation on \mathbb{Z}

■ N, Z, and Q have the same cardinality and are hence in the same equivalence class. They all have the same "cardinal number" ℵ₀.

Definition

Roughly speaking the cardinal number of A, denoted card A is the equivalence class of all sets which have the same cardinality as A. That is, card A = card B if and only if $A \sim B$. (Note that this definition poses problems with set theory and card A should actually be defined as a particular representative of [A] that can always be uniquely determined.)

- We can order the cardinals, by setting card A ≤ card B whenever there is a one-to-one map from A to B. If it is also the case that A ≁ B, then we write card A < card B.</p>
- Cantor's Theorem \Rightarrow card A <card(P(A)) <card $(P(P(A))) < \cdots$
- Does there exist a set A such that card $\mathbb{N} < \operatorname{card} A < \operatorname{card} \mathbb{R}$?

Sequences and Convergence

 Our intuitions are severely broken when manipulating infinite series, so we need to develop a logically rigorous theory of sequences and series, if we hope to prove things about them.

Definition

A **sequence** is a function whose domain is \mathbb{N} (or sometimes $\mathbb{N} \cup \{0\}$). Given $f : \mathbb{N} \to \mathbb{R}$, f(n) is the *n*th number in an infinite ordered list.

<u>Example</u>: $(1, \frac{1}{2}, \frac{1}{3}, \dots)$, $(\frac{1+n}{n})_{n=1}^{\infty}$, and (a_n) where $a_1 = 1$ and $a_n = 3a_{n-1} + 1$ for n > 1 are all ways to describe a sequence.

Definition

A sequence (a_n) converges to a real number a if, for every positive number $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that whenever $n \ge N$ it follows that $|a_n - a| < \varepsilon$. We write either $\lim a_n = a$, $\lim_{n \to \infty} a_n = a$ or $(a_n) \to a$.

■ *N* depends on the choice of *ε*!