Lecture #6

MA 511, Introduction to Analysis

June 2, 2021

MA 511, Introduction to Analysis $\begin{array}{ccc} \hline \end{array}$ [Lecture](#page-8-0) #6 1 / 9

A construction of $\mathbb R$ from Cauchy sequences

- \blacksquare A set of axioms is meaningless if nothing satisfies it, so we will now show that such a field exists.
- **Ne cannot prove that Cauchy sequences converge using only the field** and order properties, so a standard procedure to force all Cauchy sequences to converge is adding new points to the metric space in a process called **completion**.

Definition

First of all consider the set:

$$
C_{\mathbb{Q}} = \{(x_n) : (x_n) \text{ is a Cauchy sequence in } \mathbb{Q}\}
$$

We can define an equivalence relation on $C_{\mathbb{O}}$ as follows:

$$
(x_n) \sim (y_n)
$$
 if and only if
$$
(x_n - y_n) \to 0
$$

Now, define R to be the set of equivalence classes of C_0 with respect to this equivalence relation, which we also call the completion of Q.

Operations on $\mathcal R$

Proposition

The relation $(x_n) \sim (y_n)$ if and only if $(x_n - y_n) \rightarrow 0$ on C_0 is an equivalence relation.

Proposition

Equivalence classes are either equal or disjoint. Thus, given an equivalence relation \sim on a set S, the equivalence classes form a partition of S.

Definition

We can define addition and multiplication on R as follows:

$$
[(x_n)] + [(y_n)] = [(x_n + y_n)] \text{ and } [(x_n)] \cdot [(y_n)] = [(x_n \cdot y_n)]
$$

Now, $\alpha \in \mathcal{R}$ is **positive** if there is some eventually positive sequence (x_n) such that $\alpha = [(x_n)]$. Then, we can define an order on R as follows:

 $[(x_n)] < [(y_n)]$ if $[(y_n - x_n)]$ is positive

Proposition

The operations of addition and multiplication on R are well-defined.

Proposition (Field properties)

For all $a, b, c \in \mathcal{R}$, we have:

$$
a + (b + c) = (a + b) + c \text{ and } a(bc) = (ab)c
$$

ii
$$
a + b = b + a
$$
 and $ab = ba$

$$
\mathbf{iii} \ \ a+0=a \ \text{and} \ \ a\cdot 1=a
$$

iv There exists a' $\in \mathcal{R}$ such that $a + a' = 0$, and if $a \neq 0$, there exists $a^* \in \mathcal{R}$ such that $aa^* = 1$.

v $a(b+c)=ab+ac$

where $0 := [(0)]$ and $1 = [(1)]$.

Order properties

Proposition

The order on R is well defined.

Proposition

Let \mathcal{R}^+ be the positive elements of \mathcal{R} . Then, for $x \in \mathcal{R}$ either $x \in \mathcal{R}^+$, $x = 0$ or $-x \in \mathcal{R}^+$. Furthermore if a, $b \in \mathcal{R}^+$, then $a + b \in \mathcal{R}^+$ and $ab \in \mathcal{R}^+$.

Proposition (Order properties)

For all $a, b, c \in \mathcal{R}$, we have:

- **ii** Either $a < b$, $a = b$ or $b < a$.
- **if** If $a < b$ and $b < c$, then $a < c$.

 $\overline{\textbf{m}}$ If a $<$ b, then a $+$ c $<$ b $+$ c, and if c $>$ 0, then ac $<$ bc, whereas if $c < 0$, then ac $> bc$.

Proposition

The ordered field R contains $\mathbb Q$, and $\mathbb Q$ is dense in R .

Proposition (Completeness of \mathcal{R})

Every nonempty subset of R that is bounded above has a supremum.

Proposition (Uniqueness of \mathcal{R})

If K is another complete ordered field, then there is a bijective map $f: K \to \mathcal{R}$ such that for $x, y \in K$, we have:

$$
f(x + y) = f(x) + f(y)
$$

$$
\mathbf{H} f(xy) = f(x)f(y)
$$

$$
\blacksquare
$$
 If $x < y$, then $f(x) < f(y)$.

In this case, we say that K is **order isomorphic** to R.

Properties of infinite series

Recall that $\sum_{k=1}^{\infty} a_k = A$ means that $\lim s_n = \lim (a_1 + \cdots + a_n) = A$, so we can apply our results for sequences to get results for series.

Theorem (Algebraic limit theorem for series)

If $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$, then we have:

$$
\mathbf{I} \ \sum_{k=1}^{\infty} ca_k = cA \ \text{for all} \ c \in \mathbb{R}
$$

$$
\mathsf{ii} \ \sum_{k=1}^\infty (a_k + b_k) = A + B
$$

Theorem (Cauchy criterion for series)

The series $\sum_{k=1}^{\infty} a_k$ converges if and only if, given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n > m > N$:

$$
|a_{m+1}+a_{m+2}+\cdots+a_n|<\varepsilon
$$

Corollary

If the series
$$
\sum_{k=1}^{\infty} a_k
$$
 converges, then $(a_k) \to 0$.

Theorem (Comparison test)

Assume (a_k) and (b_k) are sequences satisfying $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$.

i If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.

 \blacksquare If $\sum_{k=1}^\infty a_k$ diverges, then $\sum_{k=1}^\infty b_k$ diverges.

Remember that statements like this are true even if we change some finite number of initial terms. We can weaken the hypothesis to $0 \le a_k \le b_k$ for all $k \ge M$ for some $M \in \mathbb{N}$.

Theorem (Absolute convergence test)

If the series $\sum_{k=1}^{\infty} |a_k|$ converges, then $\sum_{k=1}^{\infty} a_k$ converges as well.

 \blacksquare Is the converse true?

Definition

If $\sum_{k=1}^{\infty} |a_k|$ converges, then we say the original series $\sum_{k=1}^{\infty} a_k$ converges **absolutely**. If on the other hand, the series $\sum_{k=1}^{\infty} a_k$ converges, but the series $\sum_{k=1}^\infty |a_k|$ diverges, then we say that the original series $\sum_{k=1}^\infty a_k$ **converges conditionally**.

Theorem (Alternating series test)

Let (a_n) be a sequence satisfying:

$$
a_1 \geq a_2 \geq a_3 \geq \cdots \geq a_n \geq a_{n+1} \geq \cdots
$$

$$
\mathbf{H}^{\top}\left(a_{n}\right)\rightarrow0
$$

Then, the alternating series $\sum_{k=1}^{\infty}(-1)^{n+1}a_n$ converges.

Example: The alternating harmonic series $\sum_{n=1}^{\infty}$ $(-1)^{n+1}$ $\frac{1}{n}$ converges conditionally.