Lecture #6

MA 511, Introduction to Analysis

June 2, 2021

MA 511, Introduction to Analysis

Lecture #6 1 / 9

A construction of $\ensuremath{\mathbb{R}}$ from Cauchy sequences

- A set of axioms is meaningless if nothing satisfies it, so we will now show that such a field exists.
- We cannot prove that Cauchy sequences converge using only the field and order properties, so a standard procedure to force all Cauchy sequences to converge is adding new points to the metric space in a process called **completion**.

Definition

First of all consider the set:

$$C_{\mathbb{Q}} = \{(x_n) : (x_n) \text{ is a Cauchy sequence in } \mathbb{Q}\}$$

We can define an equivalence relation on $C_{\mathbb{Q}}$ as follows:

$$(x_n) \sim (y_n)$$
 if and only if $(x_n - y_n) \rightarrow 0$

Now, define \mathcal{R} to be the set of equivalence classes of $C_{\mathbb{Q}}$ with respect to this equivalence relation, which we also call the completion of \mathbb{Q} .

Operations on ${\mathcal R}$

Proposition

The relation $(x_n) \sim (y_n)$ if and only if $(x_n - y_n) \rightarrow 0$ on $C_{\mathbb{Q}}$ is an equivalence relation.

Proposition

Equivalence classes are either equal or disjoint. Thus, given an equivalence relation \sim on a set S, the equivalence classes form a partition of S.

Definition

We can define addition and multiplication on $\ensuremath{\mathcal{R}}$ as follows:

$$[(x_n)] + [(y_n)] = [(x_n + y_n)]$$
 and $[(x_n)] \cdot [(y_n)] = [(x_n \cdot y_n)]$

Now, $\alpha \in \mathcal{R}$ is **positive** if there is some eventually positive sequence (x_n) such that $\alpha = [(x_n)]$. Then, we can define an order on \mathbb{R} as follows:

$$[(x_n)] < [(y_n)]$$
 if $[(y_n - x_n)]$ is positive

Proposition

The operations of addition and multiplication on $\mathcal R$ are well-defined.

Proposition (Field properties)

For all $a, b, c \in \mathcal{R}$, we have:

$$\blacksquare$$
 $a + (b + c) = (a + b) + c$ and $a(bc) = (ab)c$

$$iii$$
 $a + b = b + a$ and $ab = ba$

☑ There exists $a' \in \mathcal{R}$ such that a + a' = 0, and if $a \neq 0$, there exists $a^* \in \mathcal{R}$ such that $aa^* = 1$.

where 0 := [(0)] and 1 = [(1)].

Order properties

Proposition

The order on \mathcal{R} is well defined.

Proposition

Let \mathcal{R}^+ be the positive elements of \mathcal{R} . Then, for $x \in \mathcal{R}$ either $x \in \mathcal{R}^+$, x = 0 or $-x \in \mathcal{R}^+$. Furthermore if $a, b \in \mathcal{R}^+$, then $a + b \in \mathcal{R}^+$ and $ab \in \mathcal{R}^+$.

Proposition (Order properties)

For all $a, b, c \in \mathcal{R}$, we have:

- **i** Either a < b, a = b or b < a.
- If a < b and b < c, then a < c.
- If a < b, then a + c < b + c, and if c > 0, then ac < bc, whereas if c < 0, then ac > bc.

Proposition

The ordered field \mathcal{R} contains \mathbb{Q} , and \mathbb{Q} is dense in \mathcal{R} .

Proposition (Completeness of \mathcal{R})

Every nonempty subset of \mathcal{R} that is bounded above has a supremum.

Proposition (Uniqueness of \mathcal{R})

If K is another complete ordered field, then there is a bijective map $f : K \to \mathcal{R}$ such that for $x, y \in K$, we have:

$$f(x+y) = f(x) + f(y)$$

$$f(xy) = f(x)f(y)$$

If
$$x < y$$
, then $f(x) < f(y)$.

In this case, we say that K is **order isomorphic** to \mathcal{R} .

Properties of infinite series

Recall that $\sum_{k=1}^{\infty} a_k = A$ means that $\lim s_n = \lim(a_1 + \cdots + a_n) = A$, so we can apply our results for sequences to get results for series.

Theorem (Algebraic limit theorem for series)

If $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$, then we have:

$$\sum_{k=1}^{\infty} ca_k = cA$$
 for all $c \in \mathbb{R}$

$$\lim \sum_{k=1}^{\infty} (a_k + b_k) = A + B$$

Theorem (Cauchy criterion for series)

The series $\sum_{k=1}^{\infty} a_k$ converges if and only if, given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n > m \ge N$:

$$|a_{m+1}+a_{m+2}+\cdots+a_n|<\varepsilon$$

Corollary

If the series
$$\sum_{k=1}^{\infty} a_k$$
 converges, then $(a_k) \rightarrow 0$.

Theorem (Comparison test)

Assume (a_k) and (b_k) are sequences satisfying $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$.

i If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.

If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.

Remember that statements like this are true even if we change some finite number of initial terms. We can weaken the hypothesis to 0 ≤ a_k ≤ b_k for all k ≥ M for some M ∈ N.

Theorem (Absolute convergence test)

If the series $\sum_{k=1}^{\infty} |a_k|$ converges, then $\sum_{k=1}^{\infty} a_k$ converges as well.

Is the converse true?

Definition

If $\sum_{k=1}^{\infty} |a_k|$ converges, then we say the original series $\sum_{k=1}^{\infty} a_k$ converges **absolutely**. If on the other hand, the series $\sum_{k=1}^{\infty} a_k$ converges, but the series $\sum_{k=1}^{\infty} |a_k|$ diverges, then we say that the original series $\sum_{k=1}^{\infty} a_k$ converges conditionally.

Theorem (Alternating series test)

Let (a_n) be a sequence satisfying:

$$a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$$

ii
$$(a_n) \rightarrow 0$$

Then, the alternating series $\sum_{k=1}^{\infty} (-1)^{n+1} a_n$ converges.

<u>Example</u>: The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.