Lecture #7

MA 511, Introduction to Analysis

June 3, 2021

MA 511, Introduction to Analysis **[Lecture](#page-7-0) #7** 1 / 8

Definition

Let $\sum_{k=1}^{\infty}a_k$ be a series. A series $\sum_{k=1}^{\infty}b_k$ is called a **rearrangement** of $\sum_{k=1}^\infty a_k$ if there exists a one-to-one onto function $f:\mathbb{N}\to\mathbb{N}$ such that $b_{f(k)} = a_k$ for all $k \in \mathbb{N}$.

■ We were able to construct a rearrangement of the alternating series that converged to a limit different from that of the original series, because the alternating series converges conditionally!

Theorem

If a series converges absolutely, then any rearrangement of this series converges to the same limit.

■ The situation for conditionally convergent series is especially pathological. If $\sum_{k=1}^{\infty}a_{k}$ converges conditionally, then for any $r\in\mathbb{R}$, there exists a rearrangement of $\sum_{k=1}^{\infty} a_k$ that converges to r.

■ The added hypothesis of absolute convergence also comes to save the day for the non-commutative double summations we saw!

Theorem

Let $\{a_{ii} : i, j \in \mathbb{N}\}\$ be a doubly indexed array of real numbers. If

$$
\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}|a_{ij}|
$$

converges, then both $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{ij}$ and $\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}a_{ij}$ converge to the same value. Moreover, we have:

$$
\lim_{n\to\infty} s_{nn} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}
$$

where $s_{nn} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$.

Products of series

What happens if we try to take the product of two series?

$$
\left(\sum_{i=1}^{\infty} a_k\right) \left(\sum_{j=1}^{\infty} b_k\right) = (a_1 + a_2 + a_3 + \cdots) (b_1 + b_2 + b_3 + \cdots)
$$

= $a_1b_1 + (a_1b_2 + a_2b_1) + (a_1b_3 + a_2b_2 + a_3b_1) + \cdots$
= $\sum_{k=2}^{\infty} d_k$

where $d_k = a_1b_{k-1} + a_2b_{k-2} \cdots + a_{k-1}b_1$. This is called the **Cauchy product** of the two series.

Theorem

If
$$
\sum_{i=1}^{\infty} |a_k| = A
$$
 and $\sum_{j=1}^{\infty} |b_k| = B$, then we have:

$$
\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{i}b_{j}=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}a_{i}b_{j}=\sum_{k=2}^{\infty}d_{k}=AB
$$

MA 511, Introduction to Analysis **[Lecture](#page-0-0) #7** 4 / 8

Products of series (cont.)

- We can actually weaken the hypothesis of the previous theorem to only require that one of the series converge absolutely and the other just converge (possibly conditionally).
- What if both converge conditionally? Consider $\sum_{n=1}^\infty$ $\frac{(-1)^{n+1}}{\sqrt{n}}$.
- Why the Cauchy product? Soon we will consider **power series** which are of the form $\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \cdots$, and when we multiply two power series together and collect terms with the same power of x we have:

$$
(a_0 + a_1x + a_2x^2 + \cdots)(b_0 + b_1x + b_2x^2 + \cdots)
$$

= $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \cdots$
= $d_0 + d_1x + d_2x^2 + \cdots$

where $d_k = a_0b_k + a_1d_{k-1} + \cdots a_kb_0$, which is exactly the Cauchy product of $\sum_{k=0}^{\infty}a_kx^k$ and $\sum_{k=0}^{\infty}b_kx^k$.

The Cantor set

Definition

The Cantor set C is formed as follows:

$$
C_0 = [0, 1]
$$

\n
$$
C_1 = C_0 \setminus \left(\frac{1}{3}, \frac{2}{3}\right) = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]
$$

\n
$$
C_2 = \left(\left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right]\right) \cup \left(\left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]\right)
$$

\n
$$
\vdots
$$

At each step we have a union of closed intervals and we remove the open middle third of each. If we continue this process inductively, we obtain sets C_n consisting of 2ⁿ intervals each of length $\frac{1}{3^n}$. Finally, the Cantor set is:

$$
C=\bigcap_{n=0}^{\infty}C_n
$$

- What does C look like? Does it contain any points besides the endpoints of these intervals?
- What is the "length" of C ? The "length" is 0.
- What is the cardinality of C? The cardinality is card \mathbb{R} .
- What is the "dimension" of C ? The "dimension" is $\frac{\log 2}{\log 3} \approx 0.631$.

Recall that given $a \in \mathbb{R}$ **and** $\varepsilon > 0$ **, the** *ε***-neighborhood of a is the set** $V_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon).$

Definition

A set $O \subseteq \mathbb{R}$ is **open** if for all points $a \in O$ there exists an ε -neighborhood $V_{\varepsilon}(a) \subseteq O.$

Example: $\mathbb R$ itself, the empty set \varnothing , and open intervals (a, b) are all open.

Theorem

i The union of an arbitrary collection of open sets is open.

ii The intersection of a finite collection of open sets is open.