Lecture #9

MA 511, Introduction to Analysis

June 7, 2021

MA 511, Introduction to Analysis $\sqrt{7}$

Perfect sets

- One of the goals of topology is to strip away all of the extraneous information and isolate the properties responsible for a particular phenomenon we are studying.
- For example, we saw that the set $[0, 1]$ was uncountable, but what is it about this set that makes it uncountable? Is it a particular example of a more general phenomenon?

Definition

A set $P \subseteq \mathbb{R}$ is **perfect** if it is closed and contains no isolated points.

Example: Show that the Cantor set is perfect.

Theorem

A nonempty perfect set is uncountable.

Definition

Two nonempty sets $A, B \subseteq \mathbb{R}$ are **separated** if $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$. A set $E \subseteq \mathbb{R}$ is **disconnected** if it can be written as $E = A \cup B$, where A and B are nonempty separated sets. A set that is not disconnected is called **connected**.

Theorem

A set $E \subseteq \mathbb{R}$ is connected if and only if, for all nonempty disjoint sets A and B satisfying $E = A \cup B$, there always exists a convergent sequence $(x_n) \rightarrow x$ with (x_n) contained in one of A or B and x an element of the other.

Theorem

A set $E \subseteq \mathbb{R}$ is connected if and only if whenever $a < c < b$ with $a, b \in E$, it follows that $c \in E$ as well.

F*^σ* sets and G*^δ* sets

 \blacksquare The closer we look, the more intricate and enigmatic $\mathbb R$ looks.

- Open sets are either a finite or countable union of open intervals.
- Closed sets on the other hand do have a neat characterization. For example, the Cantor set is closed.

Definition

A set $A \subseteq \mathbb{R}$ is called an F_{σ} set if it can be written as the countable union of closed sets. A set $B \subseteq \mathbb{R}$ is called a G_{δ} set if it can be written as the countable intersection of open sets.

Proposition

A set A is a G*^δ* set if and only if its complement is an F*^σ* set.

$$
\blacksquare
$$
 (a, b] is both a G_δ set and an F_σ set.

$$
\blacksquare \text{ Q is an } F_{\sigma} \text{ set and } \mathbb{I} \text{ is a } G_{\delta} \text{ set.}
$$

■ Recall that a set $G \subseteq \mathbb{R}$ is **dense** in \mathbb{R} if, given any two real numbers $a < b$, it is possible to find a point $x \in G$ with $a < x < b$.

Theorem

If $\{G_1, G_2, G_2, \ldots\}$ is a countable collection of dense open sets, then the intersection $\bigcap_{n=1}^\infty \mathit{G}_n$ is not empty.

Corollary

The irrationals II is not an F_{σ} set and consequently $\mathbb Q$ is not a G_{δ} set.

E Can you find a set which is neither an F_{σ} set nor a G_{δ} set?

Proposition

A set $G \subseteq \mathbb{R}$ is dense in \mathbb{R} if and only if $\overline{G} = \mathbb{R}$.

Definition

A set E is **nowhere-dense** if \overline{E} contains no nonempty open intervals.

Example: $\mathbb{Q} \subset \mathbb{R}$ is dense, while $\mathbb{Z} \subset \mathbb{R}$ is nowhere-dense.

Proposition

A set E is nowhere-dense in $\mathbb R$ if and only if the complement of \overline{E} is dense in R.

Theorem (Baire's theorem)

The set of real numbers $\mathbb R$ cannot be written as the countable union of nowhere-dense sets.

- Baire's theorem (also called the Baire Category theorem) offers another perspective on the size of \mathbb{R} .
- **Sets that are countable unions of nowhere-dense are called "meager"** or of **first category**, while sets that are not of first category are of **second category**. Thus the Baire Category theorem says that $\mathbb R$ is of second category.
- The Baire Category theorem generalizes to say that any complete metric space is of second category.
- Consider the complete metric space of continuous functions on [0, 1] with metric sup $|f(x) - g(x)|$. The set of functions that are differentiable at even one point is of first category. Thus, **most continuous functions do not have derivatives at any point**.