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Perfect sets

One of the goals of topology is to strip away all of the extraneous
information and isolate the properties responsible for a particular
phenomenon we are studying.
For example, we saw that the set [0, 1] was uncountable, but what is
it about this set that makes it uncountable? Is it a particular example
of a more general phenomenon?

Definition
A set P ⊆ R is perfect if it is closed and contains no isolated points.

Example: Show that the Cantor set is perfect.

Theorem
A nonempty perfect set is uncountable.

MA 511, Introduction to Analysis Lecture #9 2 / 7



Connected sets

Definition
Two nonempty sets A,B ⊆ R are separated if A∩B = ∅ and A∩B = ∅.
A set E ⊆ R is disconnected if it can be written as E = A ∪ B, where A
and B are nonempty separated sets. A set that is not disconnected is
called connected.

Theorem
A set E ⊆ R is connected if and only if, for all nonempty disjoint sets A
and B satisfying E = A ∪ B, there always exists a convergent sequence
(xn)→ x with (xn) contained in one of A or B and x an element of the
other.

Theorem
A set E ⊆ R is connected if and only if whenever a < c < b with a, b ∈ E,
it follows that c ∈ E as well.
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Fσ sets and Gδ sets

The closer we look, the more intricate and enigmatic R looks.
Open sets are either a finite or countable union of open intervals.
Closed sets on the other hand do have a neat characterization. For
example, the Cantor set is closed.

Definition
A set A ⊆ R is called an Fσ set if it can be written as the countable union
of closed sets. A set B ⊆ R is called a Gδ set if it can be written as the
countable intersection of open sets.

Proposition
A set A is a Gδ set if and only if its complement is an Fσ set.

(a, b] is both a Gδ set and an Fσ set.
Q is an Fσ set and I is a Gδ set.
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Fσ sets and Gδ sets (cont.)

Recall that a set G ⊆ R is dense in R if, given any two real numbers
a < b, it is possible to find a point x ∈ G with a < x < b.

Theorem
If {G1,G2,G2, . . . } is a countable collection of dense open sets, then the
intersection

⋂∞
n=1 Gn is not empty.

Corollary
The irrationals I is not an Fσ set and consequently Q is not a Gδ set.

Can you find a set which is neither an Fσ set nor a Gδ set?
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Nowhere-dense sets

Proposition
A set G ⊆ R is dense in R if and only if G = R.

Definition
A set E is nowhere-dense if E contains no nonempty open intervals.

Example: Q ⊆ R is dense, while Z ⊆ R is nowhere-dense.

Proposition
A set E is nowhere-dense in R if and only if the complement of E is dense
in R.
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Baire’s theorem

Theorem (Baire’s theorem)
The set of real numbers R cannot be written as the countable union of
nowhere-dense sets.

Baire’s theorem (also called the Baire Category theorem) offers
another perspective on the size of R.
Sets that are countable unions of nowhere-dense are called “meager”
or of first category, while sets that are not of first category are of
second category. Thus the Baire Category theorem says that R is of
second category.
The Baire Category theorem generalizes to say that any complete
metric space is of second category.
Consider the complete metric space of continuous functions on [0, 1]
with metric sup |f (x)− g(x)|. The set of functions that are
differentiable at even one point is of first category. Thus, most
continuous functions do not have derivatives at any point.
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